4F7: STATISTICAL SIGNAL ANALYSIS

S.S. Singh, Easter 2018

Question 1. (a.i) Finding the limit of $\mathbf{h}(n)$:

$$
\begin{aligned}
\mathbf{h}^{*} & =\mathbf{h}^{*}+\mu \mathbf{R}^{-1}\left(\mathbf{p}-\mathbf{R h}^{*}\right) \\
\mathbf{h}^{*} & =\mathbf{R}^{-1} \mathbf{p}
\end{aligned}
$$

Conditions on μ :
(a.ii) Let $\mathbf{v}(n)=\mathbf{h}(n)-\mathbf{h}^{*}$. Thus

$$
\begin{aligned}
\mathbf{h}(n)-\mathbf{h}^{*} & =\mathbf{h}(n-1)-\mathbf{h}^{*}+\mu\left(\mathbf{R h}^{*}-\mathbf{R h}(n-1)\right) \\
\mathbf{v}(n) & =\mathbf{v}(n-1)-\mu \mathbf{R v}(n-1) \\
& =(\mathbf{I}-\mu \mathbf{R}) \mathbf{v}(n-1) \\
\mathbf{v}(n) & =(\mathbf{I}-\mu \mathbf{R})^{n} \mathbf{v}(0)
\end{aligned}
$$

From the hint, $(\mathbf{I}-\mu \mathbf{R})^{n} \rightarrow 0$ when $\left|1-\mu \lambda_{i}\right|<1$ for all eigenvalues λ_{i} of \mathbf{R}.
(b) Repeat the same anlysis before with new step-size $\mu \mathbf{R}$.
guarantees convergence. Optimal $\mu=1$ as it would result in convergence in one step. Let $\mathbf{v}(n)=\mathbf{h}(n)-\mathbf{h}^{*}$. Thus

$$
\begin{aligned}
\mathbf{h}(n)-\mathbf{h}^{*} & =\mathbf{h}(n-1)-\mathbf{h}^{*}+\mu \mathbf{S}\left(\mathbf{R h}^{*}-\mathbf{R h}(n-1)\right) \\
\mathbf{v}(n) & =\mathbf{v}(n-1)-\mu \mathbf{S R v}(n-1) \\
& =(\mathbf{I}-\mu \mathbf{S R}) \mathbf{v}(n-1)
\end{aligned}
$$

If we set $\mathbf{S}=\mathbf{R}^{-1}$ then convergence assured when $|1-\mu|<1$. Optimal $\mu=1$ as it would result in convergence in one step.
(c.i) The desired response $d(n)=u(n)$ which is the noisy measurement for $x(n)$ as direct measurements of $x(n)$ are unavailable. The input to the LMS is $\mathbf{u}(n-1)=$ $[u(n-1), \ldots, u(n-M)]^{\mathrm{T}}$. The cost function is

$$
J(\mathbf{h})=E\left\{\left(d(n)-\mathbf{h}^{T} \mathbf{u}(n-1)\right)^{2}\right\}
$$

where $\mathbf{h}=\left[h_{1}, \ldots, h_{M}\right]^{\mathrm{T}}$. The gradient descent algorithm for minimising this cost function is

$$
\begin{aligned}
& \mathbf{h}(n)=\mathbf{h}(n-1)-\frac{\mu}{2} \nabla J(\mathbf{h}(n-1)) \\
& \mathbf{h}(n)=\mathbf{h}(n-1)-\frac{\mu}{2} E\left\{-2\left(d(n)-\mathbf{u}(n-1)^{\mathrm{T}} \mathbf{h}(n-1)\right) \mathbf{u}(n-1)\right\}
\end{aligned}
$$

The LMS uses a noisy estimate of the gradient and the update rule is

$$
\mathbf{h}(n)=\mathbf{h}(n-1)+\mu \mathbf{u}(n-1)\left(d(n)-\mathbf{u}(n-1)^{\mathrm{T}} \mathbf{h}(n-1)\right) .
$$

(c.ii) The LMS converges provided $0<\mu<2 / \lambda_{\max }(\mathbf{R})$ where $\mathbf{R}=E\left(\mathbf{u}(n) \mathbf{u}(n)^{\mathrm{T}}\right)$

The limit point is $\mathbf{R}^{-1} \mathbf{p}$ where $\mathbf{p}=E(\mathbf{u}(n-1) d(n))$.

$$
\begin{aligned}
\mathbf{u}(n) & =\mathbf{x}(n)+\mathbf{v}(n) \\
\mathbf{u}(n) \mathbf{u}(n)^{\mathrm{T}} & =\mathbf{x}(n) \mathbf{x}(n)^{\mathrm{T}}+\mathbf{v}(n) \mathbf{v}(n)^{\mathrm{T}}+\mathrm{ct}
\end{aligned}
$$

where ct are the cross terms which will have zero expectation. Thus limit point is $\mathbf{R}^{-1} \mathbf{p}$ where

$$
\mathbf{R}=E\left\{\mathbf{x}(n) \mathbf{x}(n)^{\mathrm{T}}\right\}+\sigma_{v}^{2} \mathbf{I}, \quad \mathbf{p}=E(\mathbf{u}(n-1) d(n))=E(\mathbf{x}(n-1) x(n))
$$

Examiner's comments: Attempted by 90% of candidates. The most popular and straightforward question, well-answered by most candidates. Part (c)-i was surprisingly difficult for many. Only a few candidates managed to identify the input and desired signals correctly; most forgot that $\mathrm{x}(\mathrm{n})$ is not available.

Question 2. (a.i) In the absence of measurements, set $\widehat{X}_{0}=0$. Then $E\left(\widehat{X}_{1}\right)=$ $G_{1} E\left(Y_{1}\right)=G_{1} E(X)=0$. Similarly, if $E\left(\widehat{X}_{n-1}\right)=0$ then $E\left(\widehat{X}_{n}\right)=0$.
(a.ii) For the error $E_{n}=\widehat{X}_{n}-X$.

$$
\begin{aligned}
\widehat{X}_{n}-X & =G_{n}\left(X+V_{n}-\widehat{X}_{n-1}\right)+\widehat{X}_{n-1}-X \\
E_{n} & =G_{n}\left(V_{n}-E_{n-1}\right)+E_{n-1}
\end{aligned}
$$

Square it and take the expectation to get:

$$
\begin{gathered}
E_{n}^{2}=G_{n}^{2}\left(V_{n}-E_{n-1}\right)^{2}+E_{n-1}^{2} \\
+2 G_{n}\left(V_{n}-E_{n-1}\right) E_{n-1} \\
E\left\{E_{n}^{2}\right\}=G_{n}^{2} E\left\{V_{n}^{2}+E_{n-1}^{2}-2 V_{n} E_{n-1}\right\}+E\left\{E_{n-1}^{2}\right\} \\
+2 G_{n} E\left\{\left(V_{n}-E_{n-1}\right) E_{n-1}\right\} \\
=G_{n}^{2}\left(\sigma_{v}^{2}+E\left\{E_{n-1}^{2}\right\}\right)+E\left\{E_{n-1}^{2}\right\} \\
-2 G_{n} E\left\{E_{n-1}^{2}\right\}
\end{gathered}
$$

The last line follows from the stated assumption on $\left\{V_{n}\right\}$. Let $\sigma_{n}^{2}=E\left\{E_{n}^{2}\right\}$. Differentiating the right-hand side with respect to G_{n} and equating to 0 to solve for G_{n} yields:

$$
G_{n}=\frac{\sigma_{n-1}^{2}}{\sigma_{v}^{2}+\sigma_{n-1}^{2}}
$$

(b.i) Use $G_{n}=\sigma_{0}^{2} /\left(n \sigma_{0}^{2}+\sigma_{v}^{2}\right)$. We can work backwards:

$$
\begin{aligned}
\widehat{X}_{n} & =G_{n} Y_{n}+\left(1-G_{n}\right) \widehat{X}_{n-1} \\
& =G_{n} Y_{n}+\left(1-\frac{\sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma_{v}^{2}}\right) \widehat{X}_{n-1} \\
& =G_{n} Y_{n}+\left(\frac{(n-1) \sigma_{0}^{2}+\sigma_{v}^{2}}{n \sigma_{0}^{2}+\sigma_{v}^{2}}\right) \widehat{X}_{n-1} \\
& =G_{n} Y_{n}+\left(\frac{G_{n}}{G_{n-1}}\right) \widehat{X}_{n-1}
\end{aligned}
$$

We see that $1-G_{n}=G_{n} / G_{n-1}$. Thus

$$
\begin{aligned}
\widehat{X}_{n} & =G_{n} Y_{n}+\left(1-G_{n}\right) \widehat{X}_{n-1} \\
& =G_{n} Y_{n}+\left(\frac{G_{n}}{G_{n-1}}\right)\left(G_{n-1} Y_{n-1}+\left(1-G_{n-1}\right) \widehat{X}_{n-2}\right) \\
& =G_{n} Y_{n}+\left(G_{n} Y_{n-1}+\frac{G_{n}}{G_{n-1}} \frac{G_{n-1}}{G_{n-2}} \widehat{X}_{n-2}\right) \\
& =G_{n} Y_{n}+\left(G_{n} Y_{n-1}+\frac{G_{n}}{G_{n-2}} \widehat{X}_{n-2}\right)
\end{aligned}
$$

We thus see that

$$
\widehat{X}_{n}=G_{n}\left(Y_{n}+Y_{n-1}+\ldots+Y_{1}\right)
$$

(b.ii) The variance of the sample mean estimate is

$$
E\left\{\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right)^{2}\right\}=E\left\{\left(X+\frac{1}{n} \sum_{i=1}^{n} V_{i}\right)^{2}\right\}=\sigma_{0}^{2}+\frac{\sigma_{v}^{2}}{n}
$$

The variance of the Kalman filter estimate, noting $E\left(\widehat{X}_{n}\right)=0$, is

$$
E\left\{\left(G_{n} \sum_{i=1}^{n} Y_{i}\right)^{2}\right\}=\left(\frac{\sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma_{v}^{2}}\right)^{2}\left(n^{2} \sigma_{0}^{2}+n \sigma_{v}^{2}\right)<\sigma_{0}^{2}+\frac{\sigma_{v}^{2}}{n}
$$

since

$$
\frac{\sigma_{0}^{2}}{n \sigma_{0}^{2}+\sigma_{v}^{2}}=\frac{1}{n+\sigma_{v}^{2} / \sigma_{0}^{2}}<\frac{1}{n}
$$

Usually the mean square error and not the variance is used to compare estimators. Think of the constant estimate $\hat{X}_{n}=0$ for all n. This is clearly unbiased and has zero variance but also clearly useless since it does not use the data.

Examiner's comments: Attempted by 71% of candidates. The derivation of the gain in (a)-ii was unnecessarily long in many attempts. The variance of the Kalman estimate in (b)-ii (note not the mean square error) was challenging for many.

Question 3. (a)

$$
\begin{aligned}
\operatorname{Pr}\left(W_{k+1}=j \mid X_{k}=i\right) & =\operatorname{Pr}\left(X_{k}+W_{k+1}=j \mid X_{k}=i\right) \\
& =\operatorname{Pr}\left(W_{k+1}=j-i\right) \\
& =f(j-i) .
\end{aligned}
$$

(b.i) The required joint pmf/pdf is

$$
\begin{gathered}
p\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)=p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right) p\left(x_{1}, \ldots, x_{n}\right) \\
p\left(x_{1}, \ldots, x_{n}\right)=P_{0, x_{1}} P_{x_{1}, x_{2}} \ldots P_{x_{n-1}, x_{n}} \\
p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right)=p\left(y_{1} \mid x_{1}\right) \cdots p\left(y_{n} \mid x_{n}\right) \\
p\left(y_{i} \mid x_{i}\right)=\frac{1}{\sqrt{2 \pi} d} \exp \left(-\frac{1}{2 d^{2}}\left[y_{i}-x_{i}\right]^{2}\right)
\end{gathered}
$$

(b.ii) This calculation is a two-step procedure. The first is the prediction step, which is

$$
p\left(x_{n+1} \mid y_{1}, \ldots, y_{n}\right)=\sum_{x_{n}=-\infty}^{\infty} p\left(x_{n} \mid y_{1}, \ldots, y_{n}\right) P_{x_{n}, x_{n+1}}
$$

The second is the update step which is

$$
p\left(x_{n+1} \mid y_{1}, \ldots, y_{n+1}\right)=\frac{p\left(x_{n+1} \mid y_{1}, \ldots, y_{n}\right) \exp \left(-\frac{1}{2 d^{2}}\left[y_{n+1}-x_{n+1}\right]^{2}\right)}{\sum_{x_{n+1}=\infty}^{\infty} p\left(x_{n+1} \mid y_{1}, \ldots, y_{n}\right) \exp \left(-\frac{1}{2 d^{2}}\left[y_{n+1}-x_{n+1}\right]^{2}\right)}
$$

(c.i) The weight is

$$
w_{n}^{i}=p\left(y_{1} \mid X_{1}^{i}\right) \times \cdots \times p\left(y_{n} \mid X_{n}^{i}\right)
$$

Only this weight will make the estimate unbiased.
(c.ii) The importance sampling estimate is

$$
\begin{aligned}
& \frac{\sum_{x_{1}=-\infty}^{\infty} \cdots \sum_{x_{n}=-\infty}^{\infty} H\left(x_{1}, \ldots, x_{n}\right) p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right) p\left(x_{1}, \ldots, x_{n},\right)}{\sum_{x_{1}=-\infty}^{\infty} \cdots \sum_{x_{n}=-\infty}^{\infty} p\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots, x_{n}\right) p\left(x_{1}, \ldots, x_{n}\right)} \\
& =\frac{\sum_{i=1}^{N} H\left(X_{1: n}^{i}\right) w_{n}^{i}}{\sum_{i=1}^{N} w_{n}^{i}}
\end{aligned}
$$

(c.iii) First note that

$$
\begin{aligned}
& \sum_{x_{n+1}=-\infty}^{\infty} h\left(x_{n+1}\right) p\left(x_{n+1} \mid y_{1: n+1}\right) \\
= & \sum_{x_{1}=-\infty}^{\infty} \ldots \sum_{x_{n+1}=-\infty}^{\infty} H\left(x_{1}, \ldots, x_{n+1}\right) p\left(x_{1}, \ldots, x_{n+1} \mid y_{1: n+1}\right)
\end{aligned}
$$

where $H\left(x_{1}, \ldots, x_{n+1}\right)=h\left(x_{n+1}\right)$. The importance sampling estimate is

$$
\begin{aligned}
& \frac{\sum_{i=1}^{N} H\left(X_{1: n+1}^{i}\right) w_{n+1}^{i}}{\sum_{i=1}^{N} w_{n+1}^{i}} \\
& =\frac{\sum_{i=1}^{N} h\left(X_{n+1}^{i}\right) w_{n+1}^{i}}{\sum_{i=1}^{N} w_{n+1}^{i}}
\end{aligned}
$$

where

$$
w_{n+1}^{i}=w_{n}^{i} \times p\left(y_{n+1} \mid X_{n+1}^{i}\right)
$$

and X_{n+1}^{i} is a sample from $p\left(x_{n+1} \mid X_{n}^{i}\right)=P_{X_{n}^{i}, x_{n+1}}$. Note thay we are given samples $X_{1: n}^{i}$ from $p\left(x_{1}, \ldots, x_{n},\right)$ and need to extend each of these to a sample from

$$
p\left(x_{1}, \ldots, x_{n+1}\right)=p\left(x_{1}, \ldots, x_{n}\right) p\left(x_{n+1} \mid x_{n}\right)=p\left(x_{1}, \ldots, x_{n}\right) P_{x_{n}, x_{n+1}}
$$

(d) Just need to calculate $E\left(H\left(X_{1: n}^{J_{1}}\right)\right)$ which is

$$
\begin{aligned}
E\left(H\left(X_{1: n}^{J_{1}}\right)\right) & =E\left[\sum_{j=1}^{N} H\left(X_{1: n}^{j}\right) \operatorname{Pr}\left(J_{1}=j\right)\right] \\
& =E\left[\sum_{j=1}^{N} H\left(X_{1: n}^{j}\right) \operatorname{Pr}\left(J_{1}=j\right)\right] \\
& =E\left[\sum_{j=1}^{N} H\left(X_{1: n}^{j}\right) \frac{w_{n}^{j}}{\sum_{i=1} w_{n}^{i}}\right]
\end{aligned}
$$

and the inner term is the importance sampling estimate from the previous part.
Examiner's comments: Attempted by 89% of candidates. Very well answered question. The exception being part (d). Many were not able to prove that resampling is unbiased. This is a conditional expectation and only a few could articulate the steps correctly.

Question 4. (a)

$$
\begin{aligned}
p(X & \left.=i \mid Y_{1}=y_{1}, \ldots, Y_{k}=y_{k}\right) \\
& =\frac{p(i) p\left(y_{1} \mid i\right) \cdots p\left(y_{k} \mid i\right)}{\sum_{j=1}^{\infty} p(j) p\left(y_{1} \mid j\right) \cdots p\left(y_{k} \mid j\right)} \\
p_{k}(i) & =\frac{i^{-2} \exp \left(-0.5\left(y_{1}-i\right)^{2}\right) \cdots \exp \left(-0.5\left(y_{k}-i\right)^{2}\right)}{\sum_{j=1}^{\infty} j^{-2} \exp \left(-0.5\left(y_{1}-j\right)^{2}\right) \cdots \exp \left(-0.5\left(y_{k}-j\right)^{2}\right)}
\end{aligned}
$$

(b.i) Estimate the numerator and denominator of $\sum_{i} p_{k}(i) h(i)$ separately using importance sampling as follows:

$$
\frac{N^{-1} \sum_{n=1}^{N} \frac{X_{n}^{-2}}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right) h\left(X_{n}^{2}\right)}{N^{-1} \sum_{n=1}^{N} \frac{X_{n}^{-2}}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)}
$$

(b.ii) The marginal density of the observations is

$$
\begin{aligned}
p\left(y_{1}, \ldots, y_{k}\right) & =\sum_{i=1}^{\infty} p(i) p\left(y_{1} \mid i\right) \cdots p\left(y_{k} \mid i\right) \\
& =\sum_{i=1}^{\infty} \frac{c}{i^{2}} p\left(y_{1} \mid i\right) \cdots p\left(y_{k} \mid i\right)
\end{aligned}
$$

When c in unknown we write $p\left(y_{1}, \ldots, y_{k}\right)$ as the ratio

$$
\frac{\sum_{i=1}^{\infty} i^{-2} p\left(y_{1} \mid i\right) \cdots p\left(y_{k} \mid i\right)}{\sum_{i=1}^{\infty} i^{-2}}
$$

and estimate the numerator and denominator separately using samples form the pmf $q(i)$ as follows:

$$
\frac{N^{-1} \sum_{n=1}^{N} \frac{X_{n}^{-2}}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)}{N^{-1} \sum_{n=1}^{N} \frac{X_{n}^{-2}}{q\left(X_{n}\right)}}
$$

(c.i) The importance sampling estimate of $p\left(y_{1}, \ldots, y_{k}\right)$. When c is known then the numerical value of $p(i)$ is known (for any i.) The importance sampling estimate is thus

$$
\frac{1}{N} \sum_{n=1}^{N} \frac{p\left(X_{n}\right)}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)
$$

The expected value of the corresponding importance sampling estimate is

$$
\begin{aligned}
& E\left[\frac{1}{N} \sum_{n=1}^{N} \frac{p\left(X_{n}\right)}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N} E\left[\frac{p\left(X_{n}\right)}{q\left(X_{n}\right)} p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)\right] \\
& =\frac{1}{N} \sum_{n=1}^{N}\left(\sum_{i=-\infty}^{\infty}\left[\frac{p(i)}{q(i)} p\left(y_{1} \mid i\right) \cdots p\left(y_{k} \mid i\right) q(i)\right]\right) \\
& =p\left(y_{1}, \ldots, y_{k}\right)
\end{aligned}
$$

and is thus unbiased.
(c.ii) Define W_{n} and U_{n} as

$$
W_{n}=\frac{p\left(X_{n}\right)}{q\left(X_{n}\right)}, \quad U_{n}=p\left(y_{1} \mid X_{n}\right) \cdots p\left(y_{k} \mid X_{n}\right)
$$

Then $W_{1} U_{1}, \ldots, W_{N} U_{N}$ are all independent each with mean $p\left(y_{1}, \ldots, y_{k}\right)$. The variance of $N^{-1}\left(W_{1} U_{1}+\cdots+W_{n} U_{n}\right)$ is

$$
\begin{aligned}
N^{-1} \operatorname{var}\left(W_{1} U_{1}\right) & =N^{-1}\left(E\left[\left(W_{1} U_{1}\right)^{2}\right]-p\left(y_{1}, \ldots, y_{k}\right)^{2}\right) \\
E\left[\left(W_{1} U_{1}\right)^{2}\right] & =\sum_{i=-\infty}^{\infty} q(i) \frac{p(i)}{q(i)} \frac{p(i)}{q(i)} p\left(y_{1} \mid i\right)^{2} \cdots p\left(y_{k} \mid i\right)^{2} \\
& =p\left(y_{1}, \ldots, y_{k}\right)^{2} \sum_{i=-\infty}^{\infty} q(i) \frac{p_{k}(i)}{q(i)} \frac{p_{k}(i)}{q(i)} \\
\operatorname{var}\left(W_{1} U_{1}\right) & =p\left(y_{1}, \ldots, y_{k}\right)^{2}\left(-1+\sum_{i=-\infty}^{\infty} q(i) \frac{p_{k}(i)}{q(i)} \frac{p_{k}(i)}{q(i)}\right)
\end{aligned}
$$

(c.iii) The optimal choice for $q(i)$ is $p_{k}(i)$ and the variance will be zero.

$$
\begin{aligned}
p_{k}(i)= & \frac{p(i) \exp \left(-0.5\left(y_{1}-i\right)^{2}\right) \cdots \exp \left(-0.5\left(y_{k}-i\right)^{2}\right)}{\sum_{j=-\infty}^{\infty} p(j) \exp \left(-0.5\left(y_{1}-j\right)^{2}\right) \cdots \exp \left(-0.5\left(y_{k}-j\right)^{2}\right)} \\
& =\frac{p(i) \exp \left(-\frac{0.5}{k^{-1}}\left(\frac{\bar{y}}{k}-i\right)^{2}\right)}{\sum_{j=-\infty}^{\infty} p(j) \exp \left(-\frac{0.5}{k^{-1}}\left(\frac{\bar{y}}{k}-j\right)^{2}\right)}
\end{aligned}
$$

Examiner's comments: Attempted by 50% of candidates. Part (b)-ii was not answered well with many failing to use importance sampling to estimate the unknown constant c . The calculation of the variance was spot on in many attempts.

