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Question 1. (a.i) Finding the limit of h(n):

h∗ = h∗ + µR−1(p−Rh∗)

h∗ = R−1p

Conditions on µ:
(a.ii) Let v(n) = h(n)− h∗. Thus

h(n)− h∗ = h(n− 1)− h∗ + µ(Rh∗ −Rh(n− 1))

v(n) = v(n− 1)− µRv(n− 1)

= (I− µR)v(n− 1)

v(n) = (I− µR)nv(0)

From the hint, (I− µR)n → 0 when |1− µλi| < 1 for all eigenvalues λi of R.
(b) Repeat the same anlysis before with new step-size µR.
guarantees convergence. Optimal µ = 1 as it would result in convergence in one step.
Let v(n) = h(n)− h∗. Thus

h(n)− h∗ = h(n− 1)− h∗ + µS(Rh∗ −Rh(n− 1))

v(n) = v(n− 1)− µSRv(n− 1)

= (I− µSR)v(n− 1)

If we set S = R−1 then convergence assured when |1 − µ| < 1. Optimal µ = 1 as it
would result in convergence in one step.

(c.i) The desired response d(n) = u(n) which is the noisy measurement for x(n) as
direct measurements of x(n) are unavailable. The input to the LMS is u(n − 1) =
[u(n− 1), . . . , u(n−M)]T. The cost function is

J(h) = E
{(
d(n)− hTu(n− 1)

)2
}

where h = [h1, . . . , hM ]T . The gradient descent algorithm for minimising this cost
function is

h(n) = h(n− 1)− µ

2
∇J(h(n− 1))

h(n) = h(n− 1)− µ

2
E
{
−2
(
d(n)− u(n− 1)Th(n− 1)

)
u(n− 1)

}
The LMS uses a noisy estimate of the gradient and the update rule is

h(n) = h(n− 1) + µu(n− 1)
(
d(n)− u(n− 1)Th(n− 1)

)
.

(c.ii) The LMS converges provided 0 < µ < 2/λmax(R) where R = E
(
u(n)u(n)T

)
1
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The limit point is R−1p where p = E (u(n− 1)d(n)) .

u(n) = x(n) + v(n)

u(n)u(n)T = x(n)x(n)T + v(n)v(n)T + ct

where ct are the cross terms which will have zero expectation. Thus limit point is R−1p
where

R = E
{
x(n)x(n)T

}
+ σ2

vI, p = E (u(n− 1)d(n)) = E (x(n− 1)x(n))

Examiner’s comments: Attempted by 90% of candidates. The most popular and
straightforward question, well-answered by most candidates. Part (c)-i was surprisingly
difficult for many. Only a few candidates managed to identify the input and desired
signals correctly; most forgot that x(n) is not available.
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Question 2. (a.i) In the absence of measurements, set X̂0 = 0. Then E(X̂1) =

G1E(Y1) = G1E(X) = 0. Similarly, if E(X̂n−1) = 0 then E(X̂n) = 0.
(a.ii) For the error En = X̂n −X.

X̂n −X = Gn

(
X + Vn − X̂n−1

)
+ X̂n−1 −X

En = Gn (Vn − En−1) + En−1

Square it and take the expectation to get:

E2
n = G2

n (Vn − En−1)
2 + E2

n−1

+ 2Gn (Vn − En−1)En−1

E
{
E2

n

}
= G2

nE
{
V 2
n + E2

n−1 − 2VnEn−1

}
+ E

{
E2

n−1

}
+ 2GnE {(Vn − En−1)En−1}
= G2

n

(
σ2
v + E

{
E2

n−1

})
+ E

{
E2

n−1

}
− 2GnE

{
E2

n−1

}
The last line follows from the stated assumption on {Vn}. Let σ2

n = E {E2
n}. Dif-

ferentiating the right-hand side with respect to Gn and equating to 0 to solve for Gn

yields:

Gn =
σ2
n−1

σ2
v + σ2

n−1

.

(b.i) Use Gn = σ2
0/ (nσ

2
0 + σ2

v). We can work backwards:

X̂n = GnYn + (1−Gn)X̂n−1

= GnYn +

(
1− σ2

0

nσ2
0 + σ2

v

)
X̂n−1

= GnYn +

(
(n− 1)σ2

0 + σ2
v

nσ2
0 + σ2

v

)
X̂n−1

= GnYn +

(
Gn

Gn−1

)
X̂n−1

We see that 1−Gn = Gn/Gn−1. Thus

X̂n = GnYn + (1−Gn) X̂n−1

= GnYn +

(
Gn

Gn−1

)(
Gn−1Yn−1 + (1−Gn−1)X̂n−2

)
= GnYn +

(
GnYn−1 +

Gn

Gn−1

Gn−1

Gn−2

X̂n−2

)
= GnYn +

(
GnYn−1 +

Gn

Gn−2

X̂n−2

)
We thus see that

X̂n = Gn(Yn + Yn−1 + . . .+ Y1)
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(b.ii) The variance of the sample mean estimate is

E


(
1

n

n∑
i=1

Yi

)2
 = E


(
X +

1

n

n∑
i=1

Vi

)2
 = σ2

0 +
σ2
v

n
.

The variance of the Kalman filter estimate, noting E(X̂n) = 0, is

E


(
Gn

n∑
i=1

Yi

)2
 =

(
σ2

0

nσ2
0 + σ2

v

)2 (
n2σ2

0 + nσ2
v

)
< σ2

0 +
σ2
v

n

since

σ2
0

nσ2
0 + σ2

v

=
1

n+ σ2
v/σ

2
0

<
1

n
.

Usually the mean square error and not the variance is used to compare estimators.
Think of the constant estimate X̂n = 0 for all n. This is clearly unbiased and has zero
variance but also clearly useless since it does not use the data.

Examiner’s comments: Attempted by 71% of candidates. The derivation of the gain
in (a)-ii was unnecessarily long in many attempts. The variance of the Kalman estimate
in (b)-ii (note not the mean square error) was challenging for many.
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Question 3. (a)

Pr(Wk+1 = j | Xk = i) =Pr(Xk +Wk+1 = j | Xk = i)

=Pr(Wk+1 = j − i)
=f(j − i).

(b.i) The required joint pmf/pdf is

p(x1, y1, . . . , xn, yn) = p(y1, . . . , yn | x1, . . . , xn)p(x1, . . . , xn)

p(x1, . . . , xn) = P0,x1Px1,x2 . . . Pxn−1,xn

p(y1, . . . , yn | x1, . . . , xn) = p(y1 | x1) · · · p(yn | xn)

p(yi | xi) =
1√
2πd

exp

(
− 1

2d2
[yi − xi]2

)
(b.ii) This calculation is a two-step procedure. The first is the prediction step, which

is

p(xn+1 | y1, . . . , yn) =
∞∑

xn=−∞

p(xn | y1, . . . , yn)Pxn,xn+1

The second is the update step which is

p(xn+1 | y1, . . . , yn+1) =
p(xn+1 | y1, . . . , yn) exp

(
− 1

2d2
[yn+1 − xn+1]

2)∑∞
xn+1=∞ p(xn+1 | y1, . . . , yn) exp

(
− 1

2d2
[yn+1 − xn+1]

2)
(c.i) The weight is

wi
n = p(y1 | X i

1)× · · · × p(yn | X i
n).

Only this weight will make the estimate unbiased.
(c.ii) The importance sampling estimate is∑∞

x1=−∞ · · ·
∑∞

xn=−∞H(x1, . . . , xn)p(y1, . . . , yn | x1, . . . , xn)p(x1, . . . , xn, )∑∞
x1=−∞ · · ·

∑∞
xn=−∞ p(y1, . . . , yn | x1, . . . , xn)p(x1, . . . , xn)

=

∑N
i=1H(X i

1:n)w
i
n∑N

i=1w
i
n

(c.iii) First note that

∞∑
xn+1=−∞

h(xn+1)p(xn+1 | y1:n+1)

=
∞∑

x1=−∞

. . .
∞∑

xn+1=−∞

H(x1, . . . , xn+1)p(x1, . . . , xn+1 | y1:n+1)
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where H(x1, . . . , xn+1) = h(xn+1). The importance sampling estimate is

∑N
i=1 H(X i

1:n+1)w
i
n+1∑N

i=1 w
i
n+1

=

∑N
i=1 h(X

i
n+1)w

i
n+1∑N

i=1 w
i
n+1

where

wi
n+1 = wi

n × p(yn+1 | X i
n+1)

and X i
n+1 is a sample from p(xn+1 | X i

n) = PXi
n,xn+1

. Note thay we are given samples
X i

1:n from p(x1, . . . , xn, ) and need to extend each of these to a sample from

p(x1, . . . , xn+1) = p(x1, . . . , xn)p(xn+1 | xn) = p(x1, . . . , xn)Pxn,xn+1 .

(d) Just need to calculate E(H(XJ1
1:n)) which is

E(H(XJ1
1:n)) = E

[
N∑
j=1

H(Xj
1:n) Pr(J1 = j)

]

= E

[
N∑
j=1

H(Xj
1:n) Pr(J1 = j)

]

= E

[
N∑
j=1

H(Xj
1:n)

wj
n∑

i=1w
i
n

]

and the inner term is the importance sampling estimate from the previous part.
Examiner’s comments: Attempted by 89% of candidates. Very well answered ques-

tion. The exception being part (d). Many were not able to prove that resampling is
unbiased. This is a conditional expectation and only a few could articulate the steps
correctly.
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Question 4. (a)

p(X = i | Y1 = y1, . . . , Yk = yk)

=
p(i)p(y1 | i) · · · p(yk | i)∑∞

j=1 p(j)p(y1 | j) · · · p(yk | j)

pk(i) =
i−2 exp

(
−0.5 (y1 − i)2) · · · exp (−0.5 (yk − i)2)∑∞

j=1 j
−2 exp

(
−0.5 (y1 − j)2) · · · exp (−0.5 (yk − j)2)

(b.i) Estimate the numerator and denominator of
∑

i pk(i)h(i) separately using im-
portance sampling as follows:

N−1
∑N

n=1
X−2

n

q(Xn)
p(y1 | Xn) · · · p(yk | Xn)h(X

2
n)

N−1
∑N

n=1
X−2

n

q(Xn)
p(y1 | Xn) · · · p(yk | Xn)

(b.ii) The marginal density of the observations is

p(y1, . . . , yk) =
∞∑
i=1

p(i)p(y1 | i) · · · p(yk | i)

=
∞∑
i=1

c

i2
p(y1 | i) · · · p(yk | i).

When c in unknown we write p(y1, . . . , yk) as the ratio∑∞
i=1 i

−2p(y1 | i) · · · p(yk | i)∑∞
i=1 i

−2

and estimate the numerator and denominator separately using samples form the pmf
q(i) as follows:

N−1
∑N

n=1
X−2

n

q(Xn)
p(y1 | Xn) · · · p(yk | Xn)

N−1
∑N

n=1
X−2

n

q(Xn)

.

(c.i) The importance sampling estimate of p(y1, . . . , yk). When c is known then the
numerical value of p(i) is known (for any i.) The importance sampling estimate is thus

1

N

N∑
n=1

p(Xn)

q(Xn)
p(y1 | Xn) · · · p(yk | Xn).
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The expected value of the corresponding importance sampling estimate is

E

[
1

N

N∑
n=1

p(Xn)

q(Xn)
p(y1 | Xn) · · · p(yk | Xn)

]

=
1

N

N∑
n=1

E

[
p(Xn)

q(Xn)
p(y1 | Xn) · · · p(yk | Xn)

]

=
1

N

N∑
n=1

(
∞∑

i=−∞

[
p(i)

q(i)
p(y1 | i) · · · p(yk | i)q(i)

])
= p(y1, . . . , yk)

and is thus unbiased.
(c.ii) Define Wn and Un as

Wn =
p(Xn)

q(Xn)
, Un = p(y1 | Xn) · · · p(yk | Xn)

ThenW1U1, . . . ,WNUN are all independent each with mean p(y1, . . . , yk). The variance
of N−1(W1U1 + · · ·+WnUn) is

N−1var(W1U1) = N−1
(
E
[
(W1U1)

2]− p(y1, . . . , yk)
2
)

E
[
(W1U1)

2] = ∞∑
i=−∞

q(i)
p(i)

q(i)

p(i)

q(i)
p(y1 | i)2 · · · p(yk | i)2

= p(y1, . . . , yk)
2

∞∑
i=−∞

q(i)
pk(i)

q(i)

pk(i)

q(i)

var(W1U1) = p(y1, . . . , yk)
2

(
−1 +

∞∑
i=−∞

q(i)
pk(i)

q(i)

pk(i)

q(i)

)
(c.iii) The optimal choice for q(i) is pk(i) and the variance will be zero.

pk(i) =
p(i) exp

(
−0.5 (y1 − i)2) · · · exp (−0.5 (yk − i)2)∑∞

j=−∞ p(j) exp
(
−0.5 (y1 − j)2) · · · exp (−0.5 (yk − j)2)

=
p(i) exp

(
− 0.5

k−1

(
ȳ
k
− i
)2
)

∑∞
j=−∞ p(j) exp

(
− 0.5

k−1

(
ȳ
k
− j
)2
)

Examiner’s comments: Attempted by 50% of candidates. Part (b)-ii was not an-
swered well with many failing to use importance sampling to estimate the unknown
constant c. The calculation of the variance was spot on in many attempts.
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