EGT2
ENGINEERING TRIPOS PART IIA

Thursday 25 April $2019 \quad 14.00$ to 15.40

Module 3F8

INFERENCE

Answer not more than three questions.
All questions carry the same number of marks.
The approximate number of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed
Engineering Data Book
Information Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.
 You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

Version RET/3

1 (a) Explain what is maximum likelihood estimation and how it is used to estimate parameters in a probabilistic model from data.
(b) A regression problem comprises scalar inputs x_{n} and scalar outputs y_{n} which are linearly related: $y_{n}=m x_{n}+c+\varepsilon_{n}$. The noise ε_{n} is Gaussian with mean 0 but with variance that depends quadratically on the input: $p\left(\varepsilon_{n}\right)=\mathscr{N}\left(\varepsilon_{n} ; 0, \alpha x_{n}^{2}\right)$. Due to physical constraints, the inputs lie in the region $1<x_{n}<100$.
The offset c and noise parameter α are known, but the slope m must be learned from a training dataset $\left\{y_{n}, x_{n}\right\}_{n=1}^{N}$.
(i) Compute the log-likelihood of m.
(ii) Compute the maximum likelihood estimate of m.
(iii) You are allowed to select a new input location x at which you will be provided with a corresponding output y and the new pair $\{y, x\}$ will be added to the training data. Which value of x will be most informative about the parameter m ? Explain your reasoning.

Version RET/3

2 A retailer has access to the collar size and waist size measurements of N customers. The retailer wants to use this information to estimate the relative size of each customer in order to recommend further products. The mean of the data is removed and the two measurements for each customer are stacked into a vector $\mathbf{y}_{n}=\left[y_{1, n}, y_{2, n}\right]^{\top}$. The full data set is denoted $\left\{\mathbf{y}_{n}\right\}_{n=1}^{N}$.

The retailer models the pair of measurements for each customer in terms of a scalar latent relative-size variable s_{n}

$$
\mathbf{y}_{n}=\left[\begin{array}{l}
y_{1, n} \\
y_{2, n}
\end{array}\right]=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] s_{n}+\sigma_{y}\left[\begin{array}{l}
\varepsilon_{1, n} \\
\varepsilon_{2, n}
\end{array}\right]=\mathbf{w} s_{n}+\sigma_{y} \boldsymbol{\varepsilon}_{n}
$$

Here the weights $\mathbf{w}=\left[w_{1}, w_{2}\right]^{\top}$ capture the dependence of the two measurements on relative-size and $\boldsymbol{\varepsilon}_{n}=\left[\varepsilon_{1, n}, \varepsilon_{2, n}\right]^{\top}$ is independent and identically distributed Gaussian noise with mean zero and identity covariance $p\left(\boldsymbol{\varepsilon}_{n}\right)=\mathscr{N}\left(\boldsymbol{\varepsilon}_{n} ; \mathbf{0}, \mathbf{I}\right)$. Relative-size is assumed to follow a standard Gaussian distribution $p\left(s_{n}\right)=\mathscr{N}\left(s_{n} ; 0,1\right)$.
(a) The retailer wants to fit the parameters of the model $\theta=\left\{\mathbf{w}, \sigma_{y}\right\}$ using maximum likelihood. Compute the likelihood of the parameters $p\left(\left\{\mathbf{y}_{n}\right\}_{n=1}^{N} \mid \theta\right)$.
(b) Having fit the model, the retailer would like to estimate the size of each customer. Compute the posterior distribution over the relative-size variable given the measurements $p\left(s_{n} \mid \mathbf{y}_{n}, \theta\right)$.
(c) The retailer would like to enhance the model by including two additional pieces of information. First, they know the shoe size of their customers, which takes integer values in the range $\{2 \ldots 12\}$. Second, they know the age of their customers which affects their relative-size. Describe how the model can be altered to incorporate this information.

Version RET/3

3 The binary latent feature model first draws two binary latent variables s_{1} and s_{2} from independent Bernoulli distributions. That is, $p\left(s_{1}=1 \mid \theta\right)=\pi_{1}$ and $p\left(s_{2}=\right.$ $1 \mid \theta)=\pi_{2}$. Observations \mathbf{y}, which are real valued and D dimensional, are produced by multiplying the latent variables by the associated weights (\mathbf{w}_{1} and \mathbf{w}_{2}), adding these contributions, and corrupting with isotropic Gaussian noise of variance σ_{y}^{2}. That is, $p\left(\mathbf{y} \mid s_{1}, s_{2}, \boldsymbol{\theta}\right)=\mathscr{N}\left(\mathbf{y} ; \mathbf{w}_{1} s_{1}+\mathbf{w}_{2} s_{2}, I \sigma_{y}^{2}\right)$.
Above, the model parameters have been denoted $\theta=\left\{\pi_{1}, \pi_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \sigma_{y}^{2}\right\}$.
(a) Mathematically define a mixture of Gaussians model. Your definition should identify the mixing proportions, component means and component variances.
(b) Express the binary latent feature model, described at the start of this question, as a mixture of Gaussians stating the mixing proportions, component means and component variances in terms of the parameters θ.
(c) A machine learner will employ the EM algorithm to learn the parameters of the binary latent feature model defined above.
(i) Compute the E-step update by deriving the posterior distribution over the latent variables given an observed variable, $p\left(s_{1}, s_{2} \mid \mathbf{y}, \theta\right)$.
(ii) Describe how you would mathematically derive the M-step update. Your description should outline the steps involved, but does not require detailed calculation.

Version RET/3

4 (a) Define a hidden Markov model that has a discrete hidden state. Your definition should identify the initial state probabilities, transition probabilities and the emission distribution.
(b) A sequence model comprises a discrete latent variable s_{t} and a continuous observed variable y_{t}. The discrete state always begins with value 1 , that is $p\left(s_{1}=1\right)=1$. The state then evolves according to following rule

$$
p\left(s_{t}=k \mid s_{t-1}=k^{\prime}\right)=\left\{\begin{array}{ll}
0.9 & \text { for } k=k^{\prime}+1 \\
0.1 & \text { for } k=1 \\
0 & \text { for all other } k
\end{array} .\right.
$$

The observations are generated from Gaussian distributions $p\left(y_{t} \mid s_{t}\right)=\mathscr{N}\left(y_{t} ; s_{t}^{2}, 0.1^{2}\right)$.
(i) Sketch a typical sample from the model for $T=20$ time steps. Your sketch should show both the latent process and the corresponding observed process. Explain the salient features.
(ii) An algorithm has been used to compute the posterior distribution over the latent variable s_{t} from t observations $y_{1: t}$. The posterior is found to be

$$
p\left(s_{t}=k \mid y_{1: t}\right)=\left\{\begin{array}{ll}
\frac{2}{3} & \text { for } k=3 \\
\frac{1}{3} & \text { for } k=4 \\
0 & \text { for all other } k
\end{array} .\right.
$$

Compute the predictive distribution over the next observed variable i.e. $p\left(y_{t+1} \mid y_{1: t}\right)$. Explain each step in your calculation.
(iii) What algorithm could be used to compute the posterior distribution $p\left(s_{t}=\right.$ $\left.k \mid y_{1: t}\right)$? Would the standard implementation of this algorithm need to be modified to handle long sequences? Explain your reasoning.

END OF PAPER

Version RET/3

THIS PAGE IS BLANK

Page 6 of 6

