
Version AMB/3.4  

 Page 1 of 14  

 EGT0 

 ENGINEERING TRIPOS PART IA 

______________________________________________________________________ 

 

 Wednesday 6 June 2018        9 to 12.10 

______________________________________________________________________ 

 

 

 Paper 1 

 

 MECHANICAL ENGINEERING 

 

 Answer all questions. 

  

 The approximate number of marks allocated to each part of a question is 

indicated in the right margin. 

  

 Answers to questions in each section should be tied together and handed in 

separately. 

.  

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Engineering Data Book  

 

 

10 minutes reading time is allowed for this paper at the start of 

the exam. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 
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SECTION A 

1  (short)  A two-dimensional water jet with constant density ρ, and negligible 

friction is deflected in a right angle by a stationary circular obstacle as shown in Fig. 1. 

While in contact with the solid obstacle, the jet has circular streamlines between radii  

r = R1 and r = R2, with a velocity distribution ( )
C

v r  = 
r

.  

(a) Find the pressure difference ∆p between the streamlines at r = R1 and r = R2 in 

terms of the constants ρ, C , R1, and R2.  [6] 

(b) Find the components, parallel and perpendicular to the impinging jet, of the force 

by the jet on the obstacle, indicating their direction. [4] 

 

 

 

 

 

 

 

Fig. 1 
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2 (short) A connection between two pipes of cross sectional areas A1 and A2 can 

be made (i) with a smooth, long transition, where mixing is negligible, or (ii) with a 

sudden expansion, as indicated in Figs. 2(a) and 2(b), respectively. An incompressible 

fluid of density ρ flows at velocity V1 through A1 in each case. By mass conservation, 

the velocity through A2, far enough from the connection, is V2 = (A1/A2) V1. In case (ii), 

the pressure on the back-face of the expansion can be approximated as being equal to 

the upstream pressure p1. 

(a) Find the change in pressure between sections 1 and 2 for case (i), and show that it 

is of the form a

2

1a
2

1
KVp = , where aK is only a function of A1 and A2. [5] 

(b) Find the change in pressure between sections 1 and 2 for case (ii), and show that it 

is of the form b

2

1b
2

1
KVp = , where bK is only a function of A1 and A2. [5] 

 

     

 

 

 

 

                                     Fig. 2(a)                                                              Fig. 2(b) 

Section 1 

A1, V1, p1 

Section 1 

A1, V1, p1 
Section 2 

A2, V2a, p2a 

Section 2 

A2, V2b, p2b 

p = p1 on this face 
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3  (long)  A cylindrical, open tank discharges an incompressible fluid of density 

ρ without friction to the atmosphere as shown in Fig. 3(a). The tank has diameter D and 

time-varying instantaneous water level height h(t), which is initially h(0) = H. The 

discharge pipe has diameter d and negligible length, and the streamlines on exit can be 

assumed to be parallel. The acceleration of gravity is g. 

(a) Find the expression that relates the discharge velocity v with the rate of change of 

the water level, dh/dt. Under what conditions can the discharge be considered 

quasi-steady?  [4] 

(b) Assuming that the flow is quasi-steady, find an expression for v in terms of D, d, 

g, and the instantaneous water level, h. [8] 

(c) Derive a differential equation for h(t) and find the total discharge time TD. To 

simplify your solution you may define a constant 
( )

4

4 4
.

2

gd
G

D d
=

−
 [10] 

(d) A length of pipe L with the same diameter d is added to the discharge outlet, as 

shown in Fig. 3(b). Find the new total discharge time, DT  . Show that, for HL = , 

the new discharge time is DD TT  41.0 . [8] 

 

     

 

 

 

 

 

Fig. 3(a)                                      Fig. 3(b) 
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4 (short)  A rigid vessel contains two closed systems of two ideal gases 

separated by a piston held in position by a pin, as shown in Fig. 4. Initially gas A and 

gas B have equal volumes of 1V   = 1 m3, and gas A has twice the pressure of gas B, 1p  

= 2 Bp . The pin holding the piston is released. The pressures of both gases are equal at 

the final state and gas A has a final volume 2V . The piston is thermally conductive and 

both systems have a final temperature that is unchanged, 2T  = 1T . 

(a) Determine whether the heat transfer and work from the initial to the final state are 

positive or negative for systems A and B.  [4] 

(b)  Calculate 2V .  [6] 

 

 

 

 
 

Fig. 4 
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5 (short) A process involving a perfect gas is shown in Fig. 5, whereby two gas 

streams are mixed, and heat is extracted, such that 3 4Q −  = –1.55 MW. At inlet 1, the 

mass flow rate is 1m  = 1 kg s–1 and the temperature is 1T  = 1000 K. At inlet 2, the mass 

flow rate is  2m = 3 kg s–1 and the temperature is 2T  = 2000 K. The pressure changes are 

negligible, and the gas has a constant specific heat capacity at constant pressure of  

pc  = 350 J kg–1 K–1. 

(a) Neglecting changes in potential and kinetic energy of the gases, calculate the 

temperatures after mixing 3T , and after heat extraction 4T . [5] 

 

(b) Calculate the total rate of entropy generation for the mixing process, 1&2 3S − . [5] 

 

 

 
Fig. 5 
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6 (long)  A supercharger compressor with an intercooler is fitted to a 

reciprocating engine as shown in Fig. 6. The air flow conditions at the inlet to the 

compressor are 1T  = 300 K and 1p = 1 bar. The air flow at the compressor exit is fed 

into an intercooler which reduces the air temperature at constant pressure 2p  = 2 bar 

before entering the engine. The engine can be modelled as a steady flow device with 

heat input per unit mass of air flow of 3 4q − = 1 MJ kg–1, and an exhaust temperature of 

4T = 900 K at 4p = 1 bar. The volumetric flow rate of air into the engine is limited to 

V = 0.1 m3 s–1. Assume that the cycle fluid is air which can be treated as a perfect gas 

with heat capacity ratio  = 1.4, gas constant R  = 287 J kg–1 K–1 and specific heat 

capacity at constant pressure pc = 1.005 kJ kg–1 K–1. 

(a) Sketch a representative T s−  diagram for the total process cycle, indicating states 

1-4.     [5] 

(b)  Calculate the temperature at the compressor exit 2T  and specific work 1 2w −  

required by the compressor from the engine output assuming isentropic compression. [5] 

 

(c) Given that the intercooler has a heat transfer per unit mass of air flow of  

2 3q −  = –60 kJ kg–1, calculate the density of air at the exit of the compressor 2  and at 

the exit of the intercooler 3 . [5]     [5] 

(d) Calculate the output power 3 4W −  of the engine with and without the intercooler. [5] 

(e) Calculate the total system efficiency of the engine including the compressor and 

intercooler, and the engine efficiency without the compressor and intercooler, i.e. the 

engine only.   [5] 

(f) Discuss the impact of the compressor and intercooler on the system power and 

efficiency.     [5] 

 

Fig. 6 
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SECTION B 

7 (short) A uniform rod of length l and mass m is released from the vertical 

position shown in Fig. 7 and commences to fall under gravity. The rod rotates clockwise 

about the pivot point O where  is the angular position of the rod with respect to the 

vertical. For the case when  = 45o determine:  

(a) the angular acceleration of the rod;  [5] 

(b) the angular velocity of the rod.  [5] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 
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8 (short) A mechanism consisting of two uniform bars is held in place by a 

linear spring of spring constant k. Points A and C are fixed, while B is constrained to 

move horizontally as shown in Fig. 8. Each bar has mass m and length L. The spring is 

unstretched when the angle  is 0°, and the system is in equilibrium when  is 45o. 

(a) Obtain an expression for the potential energy of the system as a function of the 

spring extension x.   [5] 

(b) Determine a value for the spring constant k. [5] 

 

 

 

 

 

 

 

Fig. 2 
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9 (short) A fidget spinner consists of four identical annular weights held in a 

triangular configuration by a light plastic casing. Each weight has mass m, outer radius 

a and inner radius b. The weights are separated by a distance 2b such that the centre of a 

weight in the spinner’s arm is a distance 2(a+b) from the spinner’s centre as shown in 

Fig. 9.  

(a)  Find the moment of inertia of the fidget spinner about an axis through its centre 

and perpendicular to the plane of the masses.  [6] 

(b) The angular velocity of the spinner about the central axis is increased linearly as a 

function of time t such that ct= , where c is a constant. Find the total force F(t) on a 

single weight in an arm of the spinner, expressing your answer as a vector using polar 

coordinates. [4] 

 

 

 

 

 

 

 

Fig. 9 
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10 (long) A satellite of mass m is orbiting the earth which has radius R. The 

position of the satellite at any point is specified by polar coordinates (r, ), as shown in 

Fig. 10. At the perigee, the velocity of the satellite is given by v = v0 and the position of 

the satellite is given by (r0, ). The acceleration due to gravity at the surface of the earth 

is g. 

(a) Obtain expressions and values for the radial and polar components of the 

acceleration of the satellite in the elliptical orbit. Explain why the angular momentum of 

the satellite is conserved about an axis passing through the centre of the earth. [6] 

(b) The motion of the satellite can be expressed by the following differential equation  

2 2

2 2 2
0 0

1 1d gR

r rd r v

   
+ =   

   
 

Solve the above equation by subsituting u = 1/r to obtain an expression for the satellite 

orbit, and the eccentricity of the orbit.   [8] 

(c) At a given instant when the satellite is at the apogee, an impulse of magnitude I is 

imparted to the satellite, transferring it to a circular orbit of radius equal to the distance 

away from the centre of the earth at that instant. Determine the new velocity of the 

satellite v1 and the magnitude of impulse I as a function of the other parameters. [8] 

(d) At a later stage, following transfer to the circular orbit, the satellite commences to 

break up in orbit, and splits into two equal masses travelling in opposite directions. The 

velocity of the object travelling in the same direction as the original satellite is 3v1. 

Estimate the mechanical energy released instantaneously during satellite breakup. [8]  

 

 

 

 

 

 

Fig. 10 
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11 (short) A tow truck of mass M is connected to a small car of mass m by a 

stretchable elastic rope, which is modelled with a viscous dashpot  and a spring k, as 

shown in Fig. 11.     

(a) The truck and car are both stationary, and the rope is at its natural length. At time  

t = 0, the truck moves away from the car at constant velocity v. If the position of the car 

is x, show that the equation of motion for x is    

    )()( xvxvtkxm  −+−=  . [4] 

(b)  The viscous dashpot is tuned so the system is critically damped. Assuming x = 0 at 

time t = 0, find the motion of the car x(t).   [6] 

Hint: You may assume that the solution to the critically damped equation of motion 
2 2 0n ny y y + + =  is of the form  ( ) nt

y At B e
−

= + . 

 

 

Fig. 11 
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12 (long) A mass m sits at the origin and is connected to fixed plates at lz
3

4
=  

by a pair of stretched springs, each with spring constant k and natural length l, as shown 

in Fig. 12. 

(a)  How many normal modes do we expect for the mass? Sketch the expected 

displacement pattern for each mode.   [5] 

(b)  Find the angular frequency, 1, of the normal mode in which the mass moves up 

and down in the z direction.   [5] 

(c)  If the mass moves in the horizontal (z = 0) plane, the change in length of the 

springs is negligible for small displacements. By using a small angle approximation 

(   tansin ) or otherwise, show the angular frequency of the normal mode in 

which the mass moves side-to-side in the x direction is 2/12  = .  [10] 

(d)  The mass is subject to a driving vertical force zf ˆ
4

3
cos 10 








= tf  . Find the 

amplitude and phase of the steady state displacement of the mass relative to the driving 

force, assuming that damping is negligible once the steady state is achieved.  [5] 

(e) A viscous fluid is added between the plates that exerts a damping force vf −= , 

where v is the mass’s velocity and  is the damping constant. If the mass is subject to 

the same driving force, use the databook to estimate what value of  would reduce the 

displacement of the mass by half of its undamped value.   [5] 

 

Fig. 12 

END OF PAPER 
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