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Part A—Vector Calculus

Question 1

(a) (i)
dx
y

x2+y2
=

dy

− x
x2+y2

⇒ xdx+ ydy = 0⇒ x2 + y2 = C circles .

field line direction: clockwise (Fig. 1).

(ii) let x = cos θ, y = sin θ, dx = − sin θdθ, dy = cos θdθ.∮
uuu · dlll =

∫ 2π

0

1

cos2 θ + sin2 θ
(sin θ,− cos θ) · (sin θ, cos θ)dθ

=

∫ 2π

0

−dθ = −2π 6= 0 .

(iii)

(∇× uuu)z =
∂

∂x

(
− x

x2 + y2

)
− ∂

∂y

(
y

x2 + y2

)
= − 1

x2 + y2
+

2x2

(x2 + y2)2
− 1

x2 + y2
+

2y2

(x2 + y2)2
= 0 for (x, y) 6= 000 .

Hence, Stokes theorem ∮
uuu · dlll =

∫
S

(∇× uuu) · dAAA = 0 .

(iv) Since (−y, x) = reeeθ, uuu = −eeeθ/r. Hence f(r) = −1/r.

(b) ∫ ∫
ydxdy =

∫ 1

0

y

(∫ x=y/2

x=−y
dx

)
dy +

∫ 2

1

y

(∫ x=y/2

x=2y−3
dx

)
dy

=

∫ 1

0

y

(
3y

2

)
dy +

∫ 2

1

y

(
3− 3y

2

)
dy =

[
y3

2

]1
0

+

[
3y2

2
− y3

2

]2
1

=
1

2
+

3× 4

2
− 8

2
− 3

2
+

1

2
=

1

2
+ 6− 4− 3

2
+

1

2
=

3

2
.
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Figure 1:
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Question 2

(a)

I(R) =

∫ R

0

∫ π/2

0

r2rdrdθ =
π

2

∫ R

0

r3dr =
πR4

8
.

(b) ∫ 1

z=0

I(1− z)dz =
π

8

∫ 1

z=0

(1− z)4dz = −π
8

[
(1− z)5

5

]1
0

=
π

40
.

(c) (i)
∇ ·FFF = x2 + y2 6= 0 ,

FFF is not solenoidal.

(ii) On the faces x = 0, FFF = kkk, nnn = −iii,
∫
S
FFF ·nnndS = 0.

On the faces y = 0, FFF = kkk, while nnn = −jjj,
∫
S
FFF ·nnndS = 0.

On the faces z = 0, FFF = kkk, nnn = −kkk, nnn · kkk = −1,

hence
∫
S
FFF ·nnndS = −area(S) = −π4 . Gauss’ theorem∫

S

FFF ·nnndS =

∫
V

∇ ·FFFdV =

∫ ∫ ∫
V

(x2 + y2)dxdydz =
π

40
.

(iii) The volume has four faces. Since we knew already the fluxes on three surfaces, the flux on
the last surface (on the cone) can be deduce from the above equation.

Hence the flux on the surface of the cone is∫
S

FFF ·nnndS =
π

40
−
(
−π

4

)
=

11π

40
.

(iv) Gauss’ theorem ∫
S

(∇×FFF ) ·nnndS =

∫
V

∇ · (∇×FFF )dV =

∫
V

0 dV = 0 .
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Question 3

(a) Since f and g are solutions,
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
= 0 (1)

1

r

∂

∂r

(
r
∂g

∂r

)
+

1

r2
∂2g

∂θ2
= 0 . (2)

(1) + (2)⇒
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r

∂

∂r

(
r
∂g

∂r

)
+

1

r2
∂2f

∂θ2
+

1

r2
∂2g

∂θ2
= 0

1

r

∂

∂r

(
r
∂(f + g)

∂r

)
+

1

r2
∂2(f + g)

∂θ2
= 0

hence f + g is also a solution.

(b) Let f = R(r)X(θ), substitute into the equation,

1

r

∂

∂r

(
r
∂(R(r)X(θ))

∂r

)
+

1

r2
∂2(R(r)X(θ))

∂θ2
= 0

X

r

d

dr

(
r
dR

dr

)
+
R

r2
d2X

dθ2
= 0

Separation of variables
r

R

d

dr

(
r
dR

dr

)
= − 1

X

d2X

dθ2
= k ,

where k is a constant. Hence

r

R

d

dr

(
r
dR

dr

)
= k , r2

d2R

dr2
+ r

dR

dr
− kR = 0

and
d2X

dθ2
+ kX = 0

(c) Assume R = rβ , substitute into the equation of R,

r2β(β − 1)rβ−2 + rβrβ−1 − krβ = 0⇒ k = β2 ≥ 0⇒ β = ±
√
k .

Solution rβ is not admissible for β < 0 because it equals to ∞ at the origin. Hence the solution
for X is

X = A cos(βθ) +B sin(βθ) ,

where A and B are two constatnts.

(d) To satisfy the BC f(2, θ) = 2 cos θ, β = 1, hence RX = Ar cos(θ)⇒ A = 1. The solution is

r cos(θ)

(e) To satisfy the BC f(2, θ) = cos 2θ, β = 2, hence RX = Ar2 cos(2θ)⇒ A = 1/4. The solution is

1

4
r2 cos(2θ) .

Accordind to (a), the sum of the above two solutions is also a solution, furthermore, it satisfies the
BC f(2, θ) = 2 cos θ + cos 2θ, hence the solution is

f = r cos(θ) +
1

4
r2 cos(2θ) .
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Part B—Linear Algebra and Probability

Question 4

(a) (i) We need to solve Rŵ = QTv.

QTv =

(
1 0 0
0 1 0

) 0
10−6

1

 =

(
1 · 0 + 0 · 10−6 + 0 · 1
0 · 0 + 1 · 10−6 + 0 · 1

)
=

(
0

10−6

)
.

Rŵ = QTv =⇒
(

1 −1
0 10−6

)(
w1

w2

)
=

(
0

10−6

)
=⇒ w1 − w2 = 0 =⇒ w1 = w2

10−6w2 = 10−6 =⇒ w2 = 1

=⇒ ŵ =

(
1
1

)
.

(ii) Solving the normal equation yields ŵ = (STS)−1STv. STS =

(
1 −1
−1 1 + 10−12

)
, which

after rounding is

(
1 −1
−1 1

)
. Since |STS| = 0 after rounding, STS is now singular and the

method fails. The problem is that forming STS is a numerically unstable operation.

(b) (i) The characteristic equation is |(X − λI)| = 0. Expanding the left-hand side reveals the
characteristic polynomial: −λ3 + 3λ2 − 3λ. The sum of the eigenvalues is the trace of X,
which is 3.

(ii) Reducing X to row echelon form results in

 1 0 −1
0 1 −1
0 0 0

. By inspection the rank of X is 2.

A basis for the null space of X is a solution to X

 y1
y2
y3

 =

 0
0
0

. By inspection,

 1
1
1


is a basis for the null space of X.

(iii) From 4b(ii) we know the basis of the null space of X is

 1
1
1

.

The equation XY = 0 then holds when the columns of Y are multiples of

 1
1
1

 =⇒ Y = u v w
u v w
u v w

 , u, v, w ∈ R.

(iv) The columns of XY are 1) linear combinations of X; and 2) vectors whose components all
sum to 0.

∴ Z = XY iff the sum of the components of each individual column of Z is 0.

(c) The statement is true. If this statement was false then it would be possible to find α 6= β in the
row space of A, such that Aα = Aβ. This implies A(α−β) = 0 and hence α−β would be in the
null space of A. However, α−β is also in the row space of A (since the row space is closed under
linear combinations) and the only vector in both the row space of A and the null space of A is 0
and therefore α− β = 0. This must mean α = β, which contradicts the original assumption that
α 6= β. The implication is that a mapping of α to Aα from row space to column space is injective
and therefore invertible.
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Question 5

(a) (i) An LU decomposition of A using for instance Doolittle’s algorithm results in:

L =


1 0 0 0
−1 1 0 0

2 −5 1 0
−3 8 3 1

 , U =


3 −7 −2 2
0 −2 −1 2
0 0 −1 1
0 0 0 −1


(ii) First, solve Ly = b:

y1 = −9
−y1 + y2 = 5 =⇒ y2 = 5− 9 = −4
2y1 − 5y2 + y3 = 7 =⇒ y3 = 7 + 18− 20 = 5
−3y1 + 8y2 + 3y3 + y4 = 11 =⇒ y4 = 11− 27 + 32− 15 = 1

Then solve Ux = y, which provides the answer:

−x4 = 1 =⇒ x4 = −1
−x3 − x4 = 5 =⇒ x3 = −1− 5 = −6
−2x2 − x3 + 2x4 = −4 =⇒ x2 = 3− 1 + 2 = 4
3x1 − 7x2 − 2x3 + 2x4 = −9 =⇒ x1 = 28/3− 12/3 + 2/3− 9/3 = 9/3 = 3

(b) (i) After row-reducing X we have the following equation for the null space:

(
1 0 1 b

a 1 0
0 1 0 1 0 1

)


x1
x2
x3
x4
x5
x6

 =

(
0
0

)

which leads to the following system of equations:

x1 + x3 + b
ax4 + x5 = 0 =⇒ x1 = −x3 − b

ax4 − x5
x2 + x4 + x6 = 0 =⇒ x2 = −x4 − x6
x3 = x3
x4 = x4
x5 = x5
x6 = x6

Collecting terms into vectors and factoring out the variables on the right-hand side of the
equation reveals the null space (the four vectors on the right-hand side; the null space has 4
dimensions):

x1
x2
x3
x4
x5
x6

 = x3


−1

0
1
0
0
0

+ x4


− b
a
−1

0
1
0
0

+ x5


−1

0
0
0
1
0

+ x6


0
−1

0
0
0
1


(ii) We compute XXT which is:

(
4 1
1 3

)
.

The characteristic equation is λ2 − 7λ + 11 = 0 =⇒ λ = 7
2 ±

√(−7
2

)2 − 11 = 7
2 ±

√
5
4 =

7
2 ±

√
5
2 = 1

2 (7±
√

5) =⇒ λ1 = 1
2 (7 +

√
5) and λ2 = 1

2 (7−
√

5). The singular values are then

σ1 =
√

1
2 (7 +

√
5), σ2 =

√
1
2 (7−

√
5) and σ3 = 0 (with algebraic multiplicity 4).

6



(iii) Since XTX and XXT will have the same eigenvalues except for the eigenvalue of 0 (with

algebraic multiplicity 4), it is faster to first find XXT =

(
3 0
0 3

)
. The characteristic

equation is then λ2 − 6λ+ 9 with solution λ1 = λ2 = 3. λ3 = 0 with algebraic multiplicity 4.

(c) (i) YYT =

 2 2 2
2 6 2
2 2 2

.

The characteristic equation is −λ3 + 10λ2 − 16λ = −λ(λ − 8)(λ − 2), with solutions λ1 = 8,
λ2 = 2 and λ3 = 0.

For λ1 = 8 we find the eigenvector (1, 2, 1)T , which after normalising yields
(

1√
6
, 2√

6
, 1√

6

)T
.

For λ2 = 2 we find the eigenvector (1,−1, 1)T , which after normalising yields
(
− 1√

3
, 1√

3
,− 1√

3

)T
.

For λ3 = 0 we find the eigenvector (−1, 0, 1)T , which after normalising yields
(

1√
2
, 0,− 1√

2

)T
.

(ii) We need to find the decomposition Y = UΣVT .

From 5c(i) we know the eigenvalues of YYT are λ1 = 8, λ2 = 2 and λ3 = 0, which yields the
corresponding singular values σ1 = 2

√
2, σ2 =

√
2 and σ3 = 0.

This results in the following diagonal matrix of singular values Σ =

 2
√

2 0 0

0
√

2 0
0 0 0

.

Further, from 5c(i) we know the orthogonal set of eigenvectors for YYT and we can therefore

form U =


1√
6
− 1√

3
1√
2

2√
6

1√
3

0
1√
6
− 1√

3
− 1√

2

.

To find V we need to first find YTY =

 2 2
√

2 0

2
√

2 6 2
0 2 2

.

The eigenvalues of YTY are the same as for YYT .

For λ1 = 8 we find the eigenvector (
√

2, 3, 1)T , which after normalising yields
(

1√
6
, 3√

12
, 1√

12

)T
.

For λ2 = 2 we find the eigenvector (− 1√
2
, 0, 1)T , which after normalising yields

(
1√
3
, 0,− 2√

6

)T
.

For λ3 = 0 we find the eigenvector (
√

2,−1, 1)T , which after normalising yields
(

1√
2
,− 1

2 ,
1
2

)T
.

We can now form V =


1√
6

1√
3

1√
2

3√
12

0 − 1
2

1√
12
− 2√

6
1
2

.
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Question 6

(a) The probability density function integrates as:

∫ ∞
−∞

xP (X = x)dx =

∫ 1

0

1

B(α, β)
xα−1(1− x)β−1

=
1

B(α, β)

∫ 1

0

xα−1(1− x)β−1

=
B(α, β)

B(α, β)

= 1.

Further, B(α, β) is strictly positive and xα−1(1− x)β−1 is non-negative for x ∈ [0, 1] and α, β > 0.
It is therefore a valid probability density function.

(b) When α = β = 1 we obtain

P (X = x;α, β) =
1

B(α, β)
xα−1(1− x)β−1

=
Γ(α+ β)

Γ(α)Γ(β)

=
Γ(2)

Γ(1)Γ(1)
x0(1− x)0

= 1

Thus, for α = β = 1, we can rewrite P (X = x;α, β) as

P (X = x;α, β) =

{
1 if x ∈ [0, 1]
0 if x /∈ [0, 1]

which is the Uniform distribution.

(c) (i) The mean can be derived as

E[X] =

∫ ∞
−∞

xP (X = x)dx

=

∫ 1

0

x
1

B(α, β)
xα−1(1− x)β−1dx

=
1

B(α, β)

∫ 1

0

xα+1−1(1− x)β−1dx

=
1

B(α, β)
B(α+ 1, β)

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 1)Γ(β)

Γ(α+ β + 1)

=
Γ(α+ β)

Γ(α+ β + 1)

Γ(α+ 1)

Γ(α)

=
Γ(α+ β)

Γ(α+ β)(α+ β)

Γ(α)α

Γ(α)

=
α

α+ β
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(ii) The variance can be derived as Var[X] = E[X2]− E[X]2.

Based on the previous expression for the mean, E[X]2 =
(

α
α+β

)2
= α2

(α+β)2 .

E[X2] =

∫ ∞
−∞

x2P (X = x)dx

=

∫ 1

0

x2
1

B(α, β)
xα−1(1− x)β−1dx

=
1

B(α, β)

∫ 1

0

xα+2−1(1− x)β−1dx

=
1

B(α, β)
B(α+ 2, β)

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ 2, β)

Γ(α+ β + 2)

=
Γ(α+ β)

Γ(α+ β + 2)

Γ(α+ 2)

Γ(α)

=
Γ(α+ β)

Γ(α+ β + 1)(α+ β + 1)

Γ(α+ 1)(α+ 1)

Γ(α)

=
Γ(α+ β)

Γ(α+ β)(α+ β + 1)(α+ β)

Γ(α)(α+ 1)α

Γ(α)

=
(α+ 1)α

(α+ β + 1)(α+ β)

Var[X] = E[X2]− E[X]2

=
(α+ 1)α

(α+ β + 1)(α+ β)
− α2

(α+ β)2

=
(α+ 1)α(α+ β)− α2(α+ β + 1)

(α+ β + 1)(α+ β)2

=
α3 + α2β + α2 + αβ − α3 − α2β − α2

(α+ β + 1)(α+ β)2

=
αβ

(α+ β + 1)(α+ β)2

(d) We have the following equation system:

µ =
α

α+ β

σ2 =
αβ

(α+ β + 1)(α+ β)2

We thus have µ = α
α+β =⇒ α = µα+ µβ =⇒ β = 1−µ

µ α.

Substituting the latter expression into the equation for the variance results in:

σ2 =

1−µ
µ α2(

α+ 1−µ
µ α+ 1

)(
α+ 1−µ

µ α
)2 .
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Solving the above expression yields α = µ2−µ3

σ2 − µ.

Substituting the expression for α into the expression β = 1−µ
µ α yields β = µ−2µ2+µ3

σ2 − (1− µ).

We have µ = 0.05 and σ2 = 0.032 = 0.0009.

Evaluating the expression for α yields α ≈ 2.59.

Evaluating the expression for β yields β ≈ 49.19.
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