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ENGINEERING TRIPOS PART IIB

Monday 24 April 2017 14.00 to 15.30

Module 4A12

TURBULENCE AND VORTEX DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed

Engineering Data Book

Attachment: 4A12 Turbulent and Vortex Dynamics data sheet (3 pages).

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

Page 1 of 6



Version PAD/4

1 (a) A simplified model transport equation for the turbulent kinetic energy per unit

volume, k, may be written as

Dk

Dt
= νt

(

∂ui

∂x j

)2

+diffusion− ε

for high Reynolds number flows.

(i) Explain the physical meaning of these terms. [10%]

(ii) The eddy viscosity is given by νt = Cµk2/ε in the k-ε turbulence model.

Estimate the value of Cµ in a local equilibrium boundary layer for which

−u′v′/k ≃ 0.3 and the Reynolds stress is given by −u′v′ = νt (∂u/∂y) , where

u is the mean velocity and y is the wall normal distance. [45%]

(b) The turbulent kinetic energy in decaying turbulence varies as k ∼ x−1 far

downstream behind a fixed grid and the turbulence integral length scale varies as

Lturb ∼ (x+A)1/2

where A is a constant. The streamwise distance is x. Show that the turbulent kinetic

energy per unit wavenumber, κ , given as E(κ)=C1κ−5/3ε2/3 for the inertial subrange,

decays faster than k. Explain why? [45%]
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2 A turbulent flow is issuing into a stagnant environment from a nozzle of diameter

D with a uniform velocity Uo. The streamwise mean velocity can be written as

U(x,r)=Uc(x)F(η), where x and r are streamwise and radial coordinates respectively,

Uc is the centreline velocity and η = r/δ with δ as the jet half-width. Assume that

δ ∼ xa, Uc ∼ xb and the jet entrainment velocity is ue = α Uc, where α is a constant.

(a) By considering mass conservation through an infinitesimal strip of thickness dx

across the jet width, show that δ increases linearly with x. [15%]

(b) Show that b =−1 conserves the jet momentum. [30%]

(c) Assuming that u′v′ is self-similar and u′v′/U2(x,r) = f (η), show that the eddy

viscosity, νt , is function of η only. [30%]

(d) Show that the mass flow rate in the jet increases with x and

α =C

∫ ∞

0
η F(η) dη

where C is a constant of order unity. [25%]
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3 (a) State Kelvin’s theorem, Helmholtz’s first law and both parts of Helmholtz’s

second law, noting any restrictions on these laws. [20%]

(b) Use Stokes’ theorem to show that Kelvin’s theorem is a consequence of Helmholtz’s

two laws. [20%]

(c) A short line element, dr, which links two adjacent material points in a fluid is

governed by the evolution equation

D

Dt
dr = (dr ·∇)u

Suppose that dr links two adjacent points on a vortex line at t = 0, so that dr = λωωω

for some λ . Show that
Dλ

Dt
= 0

and hence deduce dr = λωωω for t > 0. Use this result to prove Helmholtz’s first law. [30%]

(d) Consider a thin, isolated vortex tube whose vorticity magnitude |ωωω| is uniform

at each cross-section and whose cross-sectional area is A(s), s being a curvilinear

coordinate measured along the centreline of the vortex tube. If δV = A(s)δ s is the

volume of a short portion of the tube, use Helmholtz’s second law to show that |ωωω|/δ s

is independent of time in an incompressible fluid. Use this to explain the phenomenon of

vortex stretching in turbulence. [30%]
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4 (a) State the Prandtl-Batchelor theorem, listing all the restrictions that apply.

Give an example where this theorem may be usefully applied. [20%]

(b) A two-dimensional flow, u(x,y), has vorticity ω(x,y) and a streamfunction

ψ(x,y). The steady vorticity equation is

(u ·∇)ω = ν∇2ω

where ν is the viscosity.

(i) Show that if ν is small but finite then, to a good approximation, ω = ω(ψ).

Hence, show that

(u ·∇)ω = ν∇ ·

[

dω

dψ
∇ψ

]

[20%]

(ii) Consider the area A encircled by a closed streamline C. Integrate the result

of (i) over A and use Gauss’ theorem to deduce that

ν
dω

dψ

∮

C
(∇ψ ·n) dℓ= 0

where dℓ is part of the streamline and n is a unit normal to C. [20%]

(iii) Show that ∇ψ is parallel to n and hence (∇ψ ·n)dℓ = ±u · dr where the

displacement vector dr is part of the curve C. [20%]

(iv) Hence show that

ν
dω

dψ

∮

C
u ·dr = 0

and deduce the Prandtl-Batchelor theorem. [20%]

END OF PAPER
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Cambridge University Engineering Department

4A12: Turbulence

Data Card

Assume incompressible fluid with constant properties.
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Energy dissipation:
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Scaling rule for shear flow, flow dominant in direction x1:
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Eddy viscosity (for simple shear):
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