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EGT3
ENGINEERING TRIPOS PART IIB

Wednesday 3 May 2017 2 to 3.30

Module 4A9

MOLECULAR THERMODYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A monatomic gas of molecular mass m and specific gas constant R is at equilibrium
and has zero mean velocity. Consider a cartesian co-ordinate system (x1, x2, x3) with
corresponding molecular velocity components (C1, C2, C3).

(a) With reference to a suitable diagram, show that the flux per unit area and unit time
of quantity Q (measured per molecule) in the positive x3 direction is given by

F+
3 (Q) =

∞∫
−∞

∞∫
−∞

∞∫
0

Q C3 f (C1, C2, C3) dC3 dC2 dC1

where f (C1, C2, C3) is the molecular velocity distribution. [30%]

(b) Explain why the molecular speed distribution g(C) is related to the molecular
velocity distribution by

g(C) = 4πC2 f (C)

where C2 =C2
1 +C2

2 +C2
3 . [5%]

(c) By considering the case where Q = m and converting the expression in (a) to
spherical polar coordinates in velocity space (as shown in Fig. 1), show that the one-sided
mass flux is given by

F+(m) =
ρC
4

where ρ is the gas density and C is the mean molecular speed. [30%]

(d) A quantity of argon gas (R = 208 J kg−1 K−1) is contained within a cubic box.
The total mass of the box and gas is 0.5 kg. One wall of the box contains a large number
of very small pores that have a total open area of 1 mm2. When the gas temperature and
pressure inside the box are 300 K and 1 bar respectively, the box is released in outer space.
Ignoring any gravitational effects, determine the initial acceleration of the box. [35%]
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2 With reference to Fig. 2, consider the laminar, incompressible, viscous flow of
helium gas between two stationary parallel plates of length L separated by a small distance
h. The flow is driven by a streamwise pressure drop ∆p and the flow velocity u may be
assumed to vary only with y. Information is required on how the pressure drop required
to drive a given mass flow rate varies with Knudsen number, Kn = λ/h (where λ is the
molecular mean free path).

(a) Given that the gas temperature is 300 K and that the separation h is 0.1 mm, estimate
the range of pressure for which the flow lies within the slip regime. Assume that helium
molecules have a diameter of 0.26 nm. [20%]

(b) Suppose from now on that the slip-flow regime applies. An approximate kinetic
theory model for this regime assumes free-molecule behaviour for the regions within one
mean free path of the walls and continuum behaviour elsewhere. Sketch a u-y diagram
to show how the slip velocity uslip is defined. Assuming that molecules are reflected
diffusely from the walls, show that on the lower wall

uslip = λ

(
du
dy

)
y=0

It may be assumed without proof that the mass flux of molecules incident on a surface
per unit area is ρC/4 and that the dynamic viscosity µ is equal to ρCλ/2, where ρ is the
density and C is the mean thermal speed of molecules. [30%]

(c) The analysis now proceeds as for continuum flow but with modified boundary
conditions to account for the non-contiuum layers at the walls. Starting from the force-
momentum principle applied to a suitable control volume, derive an expression for the
velocity profile u(y) in terms of ∆p, L, h, µ and Kn. Hence show that

∆p
∆pcont

=
1

1+B Kn

where ∆p is the actual pressure drop and ∆pcont is the pressure drop (for the same mass
flow rate) obtained assuming continuum theory to apply. Find also the value of the
coefficient B. [50%]
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3 (a) Provide one sentence answers to the following questions.

(i) What is the fundamental postulate of statistical mechanics?

(ii) Which thermodynamic properties are held constant for microcanonical and
canonical ensembles respectively?

(iii) In what order do the internal modes of energy typically become fully excited
within a diatomic molecule?

(iv) What are the effects of heat addition to and work done on a system in terms
of the energy level spacing and number of particles occupying each level? [20%]

(b) Sketch a canonical ensemble where two closed systems are in thermal contact with
an infinite thermal reservoir. Explain why the probability of one system being in its i-th
microstate, with energy Ei , must be of the functional form Pi =C exp(βEi), where C and
β are constants. Explain also why β must be related to temperature. [20%]

(c) A system contains one gram-mole of a diatomic ideal gas with a characteristic
temperature of rotation of θr = 80 K. The system is in contact with an infinite thermal
reservoir at temperature T = 40 K.

(i) The single-particle rotational partition function takes the form

Zrot =
∞

∑
n=0

(2n+1)exp
(
−n(n+1)θr

T

)
where n denotes the individual energy states. By considering only significantly
populated energy states, estimate the rotational contribution to the internal energy
of the system. You may use without proof the following expression for internal
energy

U = kT 2 ∂

∂T
(lnQ)

where Q is the system partition function and k is Boltzmann’s constant. [35%]

(ii) Taking the rotational component of the constant volume molar heat capacity
as Cv, rot = 0.8 R, where R is the molar gas constant, calculate the order of
magnitude of the standard deviation in temperature fluctuations within the system.
You may assume that the variance of system energy fluctuations is given by
σ2

E = ∂U/∂β , where β =−1/kT . [25%]
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4 Consider an ideal gas at approximately ambient temperature, confined to a two-
dimensional planar system. In the thermodynamic description of such systems, the
area A plays a similar role to that of volume in three-dimensional systems, and the
‘surface pressure’ ps replaces pressure. Thus, analogous to three-dimensional systems,
the reversible work done by the system in increasing its area by dA is δW = ps dA.

(a) Show that for an infinitesimal, reversible process the change in Helmholtz function
for the system is given by

dF =−ps dA−S dT

where F ≡U−T S and T and S are the temperature and entropy respectively. [15%]

(b) The energy levels of a free particle in a two-dimensional plane are given by the
solution to the Schrödinger wave equation, resulting in

E(nx,ny) = h2 2π

m

(
n2

x
L2

x
+

n2
y

L2
y

)
where nx and ny are integers taking values from 1 to ∞, m is the particle’s mass, h is
Planck’s constant, and Lx and Ly are the sides of the plane such that A = Lx Ly. Use this
result to determine an expression for the two-dimensional system partition function Q in
terms of m, h, A, T and Boltzmann’s constant, k.

You may use without proof the following integral

∫
∞

0
exp(−x2

τ
2)dx =

√
π

2τ
where τ > 0 [30%]

(c) Using the partition function found in (b), develop a relationship for the entropy S of
N monatomic molecules in terms of N, A, k, m, h, and T . Note that F =−kT lnQ. [30%]

(d) Calculate the increase in available microstates as a ratio Ω2/Ω1 resulting from an
isothermal expansion of 1 gram-mole of monatomic gas from A1 = 1 m2 to A2 = 2 m2. [25%]

END OF PAPER
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MODULE 4A9  −  MOLECULAR THERMODYNAMICS  
 

Answers  
 

 
 
1. (d) 0.1 ms–2 
 
2. (a) ~0.02 to ~0.2 bar  (c) B = 6 
 
3. (c) (i) 66.5 J  (ii) 3.4×10–11 K 
 

4. (b) 
  
Q = mkT

8h2 A  (c) 
  
S = Nk lnT + ln A+1− 1

N
ln N !+ ln mk

8h2

⎧
⎨
⎩

⎫
⎬
⎭

⎛
⎝⎜

⎞
⎠⎟

 (d)    2N A  
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