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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 1 May 2018 2 to 3.40

Module 4C6

ADVANCED LINEAR VIBRATIONS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 4C6 Advanced Linear Vibration data sheet (9 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) An instrumented hammer is used for modal testing.

(i) Sketch the hammer, identifying key components. [10%]

(ii) The head of such a hammer has a total mass m. Determine the tip stiffness k
required to achieve an impulse of duration b. [10%]

(iii) Sketch the frequency spectrum of the impulsive force delivered by the
hammer and use your sketch to explain the rule of thumb that the hammer excites
up to a frequency of 1/b Hz. [15%]

(b) A laser vibrometer is used to measure the vibration velocity of a steel panel struck
by the hammer. The sampling rate of data acquisition is 2 kHz and the impulse data is
sampled for a duration of 1 second. The driving-point velocity/force transfer function is
computed from the FFT of velocity and force. At a particular location A on the plate a
mode is identified at a frequency of 200 Hz, with a Q-factor of 20.

(i) Sketch the magnitude of the driving point transfer function in the vicinity of
the peak for this mode, showing the spacing of the computed data points. [15%]

(ii) Sketch the corresponding modal circle, again showing the distribution of data
points. [20%]

(c) The laser remains at A while the impulse is delivered at various other locations on
the plate. Sketch modal circles for a variety of different impulse locations. Explain why
the diameter of the modal circle changes with impulse position and identify a situation
where the modal circle will have zero diameter and where the circle changes sign. [20%]

(d) The laser is moved to a different point B and in addition to the 200 Hz mode another
mode is observed at 190 Hz with Q around 15.

(i) Explain why a new mode might have appeared and sketch the magnitude of
the driving point transfer function for point B. [5%]

(ii) On a sketch show how the Nyquist plot might appear for a frequency range
including the two modes. [5%]
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2 Two rods with uniform cross-section of area A are joined with a butt joint, to form
a single rod of length L. The join is at a distance a from the left-hand end. The left-hand
section of rod has density ρ and Young’s modulus E1, while the right-hand section has
the same density ρ but a different Young’s modulus E2. The corresponding wave speeds
are c j =

√
E j/ρ where j = 1,2. Distance x along the rod is measured from the left-hand

end. The rod undergoes axial vibration with small displacement w(x, t), and the ends are
fixed so that w(0, t) = w(L, t) = 0.

(a) Explain why one boundary condition at the join requires

E1

[
∂w
∂x

]
x=a−

= E2

[
∂w
∂x

]
x=a+

and write down the second boundary condition at this point. Hence, using the equation
of motion from the data sheet, show that the natural frequencies ω of the coupled beam
system satisfy

c1
E1

tan
ωa
c1

=− c2
E2

tan
ω(L−a)

c2
.

[30%]

(b) Use a graphical method to show the pattern of the roots of the equation for the
natural frequencies from part (a). Hence show that these natural frequencies interlace
with those obtained if the motion of the rod is constrained at the point x = a so that
w(a, t) = 0. [30%]

(c) Describe what happens in the special case for which a/c1 = (L−a)/c2. [15%]

(d) The effect of damping in the coupled rods is now considered. The two Young’s
moduli are replaced by complex values E j(1+ iη j) for j = 1,2, where η j � 1. Use
Rayleigh’s principle together with expressions for potential and kinetic energy from the
Data Sheet to show that the Q-factor of the nth mode, Qn, satisfies

1
Qn

≈ J1η1 + J2η2

where J1,J2 are expressions involving integrals over the nth mode shape un(x), satisfying
J1 + J2 = 1. [25%]
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3 (a) A possible design for a MEMS gas sensor is sketched in Fig. 1. A rectangular
plate of mass m is able to vibrate in its own plane in the direction shown in the diagram,
restrained by flexures (marked ‘F’) at the four corners. Electrodes near the plate allow
excitation and sensing of the motion. One surface of the plate is coated with a material
which can adsorb the gas to be detected. The adsorbed molecules increase the mass of
the plate and shift the resonance frequency. This shift is detected and forms the basis of
estimating the concentration of the gas.

(i) Discuss what determines the sensitivity of the sensor, and explain why low-
damping design is desirable. [15%]

(ii) What factors should be taken into account when designing for low damping?
Considerations of material, fabrication, geometry and operating conditions should
be mentioned. [30%]

(iii) Suggest alternative designs that might allow lower damping and higher
sensitivity to be achieved. [25%]

m

Drive electrode 

Sense electrode 

Anchorage Anchorage 
F F 

F F 

Fig. 1

(b) The body of an acoustic guitar is a thin-walled box with a circular soundhole of
diameter 82 mm in the top plate.

(i) If the guitar has a Helmholtz resonance at 104 Hz and the speed of sound is
c = 340 m/s, calculate the effective volume of the box. [10%]

(ii) Guitar makers sometimes use a device known as a “tornavoz” to lower the
Helmholtz resonance frequency. This consists of a thin-walled cylindrical collar of
the same diameter as the soundhole, glued to the underside of the top plate of the
guitar around the soundhole and extending inside the box. Explain how this device
works, and calculate the required height of the tornavoz cylinder in order to reduce
the Helmholtz resonance frequency by one semitone to 98 Hz. [20%]
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4 (a) A rectangular room of dimensions Lx × Ly × Lz has hard walls, floor and
ceiling. Sound pressure p(x,y,z, t) inside the room satisfies the equation

∂ 2 p
∂x2 +

∂ 2 p
∂y2 +

∂ 2 p
∂ z2 =

1
c2

∂ 2 p
∂ t2

where c is the speed of sound. The boundary condition on a hard surface requires that
the gradient of pressure normal to the surface is zero. Use the method of separation of
variables to find expressions for the mode shapes and corresponding natural frequencies
of sound pressure in the room. [40%]

(b) Sinusoidal variation in space can be characterised by wavenumber: for example
if variation with x is proportional to coskxx, then kx is the x component of wavenumber.
Describe the geometrical distribution of the mode shapes from part (a) in the wavenumber
space (kx,ky,kz). Hence show that the approximate number of natural frequencies of the
room below a frequency ω is given by

N(ω)≈
LxLyLzω3

6π2c3

provided ω is sufficiently high. [40%]

(c) A small rectangular concert hall has dimensions Lx = 12 m, Ly = 15 m, Lz = 5 m.
If the speed of sound is c = 340 m/s and all the modes of the room have a Q factor
50, estimate the modal overlap factor at frequency 500 Hz. (Modal overlap factor is the
number of natural frequencies lying within the half-power bandwidth of a mode at the
given frequency.) [20%]

END OF PAPER
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Answers

1(b) 10 sample points within the half-power bandwidth

2(a) Second boundary condition w|x=a− = w|x=a+

(c) Natural frequencies where sinωa/c1 = 0 or cosωa/c1 = 0

(d) J1 =
E1

∫ a

0
u′2n dx

E1

∫ a

0
u′2n dx+ E2

∫ L

a
u′2n dx

, J2 =
E2

∫ L

a
u′2n dx

E1

∫ a

0
u′2n dx+ E2

∫ L

a
u′2n dx

3(b)(i) 0.0205 m3; (ii) height approximately 19 mm

4(a) Mode shapes cos
mπ

Lx

cos
nπ

Ly

cos
qπ

Lz

where m, n and q take any values 0,1,2,3...

Corresponding natural frequency satisfies
ω2

c2
=

[
mπ

Lx

]2
+

[
nπ

Ly

]2
+

[
qπ

Lz

]2
(c) Modal overlap factor around 720

1


