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ENGINEERING TRIPOS PART IIB
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Module 4F3

OPTIMAL AND PREDICTIVE CONTROL

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper
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CUED approved calculator allowed

Attachment: 4F3 data sheet (two pages).

Engineering Data Book

10 minutes reading time is allowed for this paper.

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Consider the differential equation

ẋ = x+u, x(0) = x0, (1)

and the cost function

J(x0,u(·)) =
∫ T

0
u2(t)dt+

x2(T )
ε

, ε > 0,

and let V (x, t) be a solution to the Hamilton-Jacobi-Bellman PDE on the attached

datasheet. Then the optimal cost J∗(x0) = minu(·) J(x0,u(·)) satisfies J∗(x0) =V (x0,0).

(i) Let X(t) satisfy the Riccati ODE

−Ẋ = 2X −X2, X(T ) =
1
ε
. (2)

Prove that the value function V (x, t) = X(t)x2 is a solution to the Hamilton-Jacobi-

Belman PDE, and give an expression for a state feedback law u(t) = k(t)x(t) which

achieves J(x0,u(·)) = J∗(x0). [25%]

(ii) Show that

X(t) =
2

1− (1−2ε)e2(t−T)

is a solution to the Riccati ODE defined in (2). [20%]

(iii) Hence determine the optimal cost J∗(x0), and a state feedback law u(t) =

k(t)x(t) which achieves this optimal cost. [10%]

(b) If x is a solution to the differential equation defined in (1), then

x(t) = x0et +

∫ t

0
u(τ)et−τdτ.

(i) Let the input to the differential equation defined in (1) be

u(t) =
−2x0e−t

1− e−2T .

Show that x(T ) = 0, and calculate
∫ T
0 u2(t)dt. [25%]

(ii) Determine the input u to the differential equation defined in (1) which

achieves x(T ) = 0 and minimises
∫ T
0 u2(t)dt. Explain your reasoning by comparing

your answers to parts (a)(iii) and (b)(i). [20%]
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2 Consider the continuous-time system

ẋ = Ax+B1w1 +B2u, z =

[
C1x

u

]
, u = Kx, (3)

where A ∈ R
2×2, B1 ∈ R

2×1, B2 ∈ R
2×1, C1 ∈ R

1×2, and K ∈ R
1×2.

(a) The L2 norm of a signal z is defined as

‖z‖2 =

√∫ ∞

0
z(t)T z(t)dt.

For the continuous-time system defined in (3), let x(t) = 0 for all t < 0, and let w1(t) =

δ (t) (the unit delta function).

(i) Find x(0+) [where x(0+) = limε→0,ε>0 x(ε)]. [10%]

(ii) Let X ∈ R
2×2 be a symmetric solution to the Control Algebraic Riccati

Equation (CARE)

XA+AT X +CT
1 C1 −XB2BT

2 X = 0 (4)

and let A+B2K be stable. Prove that

‖z‖2
2 = x(0+)

T Xx(0+)+‖(K+BT
2 X)x‖2

2.

Hint: let V (t) = x(t)T Xx(t) and consider
∫ ∞
0+

(
zT (t)z(t)+ V̇(t)

)
dt. [25%]

(iii) Denote the transfer function from w1 to z by Tw1→z. By noting that Tw1→z is

the Laplace transform of z when w1(t) = δ (t), show that the H2 norm of Tw1→z is√
2π‖z‖2. [10%]

(b) For the continuous-time system defined in (3), let

A =

[
0 1

1 0

]
, B1 =

[√
3

0

]
, B2 =

[
0

1

]
, C1 =

[√
3 0

]
.

(i) Verify that there are two solutions to the CARE defined in (4) which take the

form

X =

[
α 3

3 β

]
,

and find the poles of A−B2BT
2 X for each of these two solutions. [35%]

(ii) Hence find the static stabilising state feedback u = Kx which minimises the

H2 norm of Tw1→z, and the value of the H2 norm of Tw1→z when this feedback is

applied. Explain your reasoning by referring to your answers to parts (a) and (b)(i). [20%]
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3 (a) Explain what is meant by the following:

(i) Convex set;

(ii) Convex function;

(iii) Convex optmization problem.

[20%]

(b) Consider the standard formulation of a receding horizon control policy for the

discrete time system x(k+1) = Ax(k)+Bu(k) where for a state x(k) = x the finite horizon

cost function

V (x,u) = xT
NPxN +

N−1

∑
i=0

(
xT
i Qxi+uT

i Rui

)
is minimized with respect to the inputs

u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

with x0 = x and xi+1 = Axi +Bui for i = 0, . . . ,N −1. Matrices P, Q, and R are constant

and positive definite. The control input is given by u∗0(x), i.e. the first element of the

optimal input sequence

u∗(x) = argmin
u

V (x,u) =
{

u∗0(x),u∗1(x), . . . ,u∗N−1(x)
}
.

Let

x =

⎡
⎢⎣

x1
...

xN

⎤
⎥⎦ ,

be the stacked vector of the states in the prediction horizon.

(i) Show that x = Φx0 +Γu for some matrices Φ and Γ and derive the form of

these matrices in terms of the system matrices A and B. [20%]

(ii) Show that the receding horizon optimization problem can be formulated as a

convex optimization problem with a quadratic cost function. [20%]

(iii) Show that the control law is given by u∗0(x) = KRHCx where KRHC is a

constant matrix and derive an expression for KRHC. [20%]

(iv) Discuss how constraints on the system states and inputs can easily be

incorporated in model predictive control. [20%]
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4 (a) Describe two advantages and two disadvantages of model predictive control. [20%]

(b) Explain what is meant by a Lyapunov function of a discrete time system and explain

how this can be used to prove global asymptotic stability. [20%]

(c) Consider the standard formulation of a receding horizon control policy for the

discrete time system x(k+1) = Ax(k)+Bu(k) where for a state x(k) = x the finite horizon

cost function

V (x,u) = xT
NPxN +

N−1

∑
i=0

(
xT
i Qxi+uT

i Rui

)
is minimized with respect to the inputs

u =

⎡
⎢⎣

u0
...

uN−1

⎤
⎥⎦

with x0 = x and xi+1 = Axi +Bui for i = 0, . . . ,N −1. Matrices P, Q, and R are constant

and positive definite. The control input is given by u∗0(x), i.e. the first element of the

optimal input sequence

u∗(x) = argmin
u

V (x,u) =
{

u∗0(x),u∗1(x), . . . ,u∗N−1(x)
}
.

(i) Explain whether this control policy always leads to a feedback system with a

stable equilibrium point. [10%]

(ii) Explain what is meant by the value function. [5%]

(iii) Show that by choosing the terminal cost such that P > 0 and

(A+BK)T P(A+BK)−P ≤−Q−KT RK

for some matrix K, then the value function can be used as a Lyapunov function for

the system. [40%]

(iv) Discuss whether for your answer in part (iii) you have explicitly constructed

the optimal control policy. [5%]

END OF PAPER
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Answers
Q1
(a)

(i) u∗(t) =−X(t)x(t) .

(iii) J∗(x0) = 2x2
0/(1− (1− 2ε)e−2T ), and is achieved by u(t) = k(t)x(t) with k(t) =

−2/(1− (1−2ε)e−2(t−T)) .

(b)

(i)
∫ T
0 u(t)2dt =

2x2
0

1−e−2T .

(ii) u(t) = −2x0e−t

1−e−2T .

Q2
(a)

(i)x(0+) = B1.

(b)

(i) −
√

3
2 ±

√
1
2 j,

√
3
2 ±

√
1
2 j .

(ii) K =
[
3

√
6
]
, Tw1→z =

√
12

√
6π .

Q3
(b)

(i)

Φ =

⎡
⎢⎢⎢⎢⎣

A

A2

...

AN

⎤
⎥⎥⎥⎥⎦ , Γ =

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AN−1B AN−2B · · · B

⎤
⎥⎥⎥⎥⎦ .
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