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EGT3
ENGINEERING TRIPOS PART 11B

Tuesday 25 April 2017 210 3.30

Module 4F3

OPTIMAL AND PREDICTIVE CONTROL
Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Wkite your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTSTO BE SUPPLIED FOR THISEXAM
CUED approved calculator allowed

Attachment: 4F3 data sheet (two pages).

Engineering Data Book

10 minutesreading timeisallowed for this paper.

You may not start toread the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (@) Consider the differential equation
X=Xx+u, X(0)=xo, Q)

and the cost function

J(xo,u(-)):/OTuz(t)dtJr@, £>0,

and let V(x,t) be a solution to the Hamilton-Jacobi-Bellman PDE on the attached
datasheet. Then the optimal cost J*(xp) = miny ) J(Xo, u(+)) satisfies J*(xp) =V (Xo,0).
(i) Let X(t) satisfy the Riccati ODE

—X=2X-X2, X(T)= %

(2)

Prove that the value function V (x,t) = X(t)x2 is a solution to the Hamilton-Jacobi-
Belman PDE, and give an expression for a state feedback law u(t) = k(t)x(t) which

achieves J(xo, u(-)) = J*(xo). [25%]
(i)  Show that )
X(t) =
=1 (1-2¢)e2t=T)
isasolution to the Riccati ODE defined in (2). [20%]

(iii) Hence determine the optimal cost J*(xg), and a state feedback law u(t) =
K(t)x(t) which achieves this optimal cost. [10%]

(b) If xisasolution to the differential equation defined in (1), then

t
X(t) :Xoet+/() u(t)e~“dr.
(i) Lettheinput to the differential equation defined in (1) be

—2xget
ut) = T2t
Show that x(T) = 0, and calculate [ u2(t)dt. [25%)]

(i) Determine the input u to the differential equation defined in (1) which
achievesx(T) = 0 and minimises fOT uz(t)dt. Explain your reasoning by comparing
your answersto parts (a)(iii) and (b)(i). [20%]
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2

Consider the continuous-time system

: CiX
X = Ax+ Bqwj + Bou, z:[j], u=Kx, 3

where A € R2%2 By € R%*1 B, e R2¥1,C; e R1¥2 and K € R1%2,

(@

The £ norm of asignal zisdefined as

2|2 = \//ODOZ(t)Tz(t)dt.

For the continuous-time system defined in (3), let x(t) = O for al t < 0, and let w4 (t) =
o(t) (the unit delta function).

(b)

(i) Findx(04) [wherex(04)=limg_0¢>0X(€)]. [10%]

(i) Let X € R%*2 be a symmetric solution to the Control Algebraic Riccati
Equation (CARE)
XA+ATX +C]Cy —XByBIX =0 (4

and let A+ BoK be stable. Prove that
12]15 = x(04)TXX(0.) +[| (K + BF X)x|[3.
Hint: etV (t) = x(t) TXx(t) and consider [ (2" (t)z(t) +V/(t)) di. [25%)]

(iii) Denote the transfer function from wy to zby Tw,; —z. By noting that Ty, —z is
the Laplace transform of zwhenw; (t) = 6(t), show that the 7> norm of Ty, —z is

V272l [10%]

For the continuous-time system defined in (3), let
01 V3
, B1=
10 0

(i)  Verify that there are two solutionsto the CARE defined in (4) which take the
form

0
1

A= , Bo= , C]_:[\/\.a) O].

X — a 3 7
3 B
and find the poles of A— BZBEX for each of these two solutions. [35%]

(i) Hence find the static stabilising state feedback u = Kx which minimises the
5 norm of Ty, —,z, and the value of the 77 norm of T,z when this feedback is
applied. Explain your reasoning by referring to your answersto parts (a) and (b)(i). [20%]
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3 (8 Explainwhat is meant by the following:
(i) Convex set;
(i) Convex function;
(iii) Convex optmization problem.

[20%]

(b) Consider the standard formulation of a receding horizon control policy for the
discrete time system x(k+ 1) = Ax(k) + Bu(k) where for a state x(k) = x the finite horizon

cost function
N—1

V(x,u) = x& PXN -+ z (xiTQxi + uiT Rui>
i=0
is minimized with respect to the inputs
Uo
u= :
UN—1

with Xxg = x and xj 11 = Axj +Bu; fori =0,...,N — 1. Matrices P, Q, and R are constant
and positive definite. The control input is given by uj(x), i.e. the first element of the
optimal input sequence

u*(x) = agminV (x,u) = {ug(x),u3 (x),...,uj_1(X) }

Let
X1

XN
be the stacked vector of the statesin the prediction horizon.

(1)  Show that x = ®xg+ I'u for some matrices @ and I" and derive the form of
these matrices in terms of the system matrices A and B. [20%]

(i)  Show that the receding horizon optimization problem can be formulated as a
convex optimization problem with a quadratic cost function. [20%]

(iii) Show that the control law is given by uj(x) = Krncx where Kryc is a
constant matrix and derive an expression for Krpc. [20%]

(iv) Discuss how constraints on the system states and inputs can easily be
incorporated in model predictive control. [20%]
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4 (@) Describe two advantages and two disadvantages of model predictive control. [20%]

(b) Explainwhat ismeant by aLyapunov function of a discrete time system and explain
how this can be used to prove global asymptotic stability. [20%]

(c) Consider the standard formulation of a receding horizon control policy for the
discrete time system x(k+ 1) = Ax(k) 4 Bu(k) wherefor a state x(k) = x thefinite horizon
cost function

N—1
V(x,u) = x{, Pxn + 2 (x,—TQxi + uiT Rui>
i=0
is minimized with respect to the inputs
Uo

UN-1
with Xg = xand xj 11 = Ax; +Bu; fori =0,...,N — 1. MatricesP, Q, and R are constant
and positive definite. The control input is given by uj(x), i.e. the first element of the
optimal input sequence
u*(x) = agminV (x,u) = {ug(x),u1(x),...,uN_1(X) } -
(i) Explain whether this control policy aways leads to a feedback system with a
stable equilibrium point. [10%)]
(i) Explain what is meant by the value function. [5%]
(iii) Show that by choosing the terminal cost such that P > 0 and

(A+BK)TP(A+BK)—P < -Q—-KTRK

for some matrix K, then the value function can be used as a Lyapunov function for
the system. [40%)]

(iv) Discuss whether for your answer in part (iii) you have explicitly constructed
the optimal control policy. [5%]

END OF PAPER

Page 5 of 6



Version ICL/3

THIS PAGE IS BLANK

Page 6 of 6



Version ICL/3

Answers

Q1

@

(i) u™(t) = =X (O)x(t) .
(iii) I*(x0) = 23/(1— (1 —2¢)e2T), and is achieved by u(t) = k(t)x(t) with k(t) =
—2/(1—(1-2¢e)e”2t=T))

(b) 2
(i) Jd u(t)2dt = 29

1 e—ZT '

(i) u(t) = 2>;0_e2T

Q2
(@
()x(0+) = By.

(b)
0BT

(i) K = [3 \/6} Ty 2 = V/12V/6m.

Q3
(b)
(i) L . i
A B 0 .0
A2 AB B .- 0
o= | |, T= . . .
AN AN-1g AN-2g ... B
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