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EGT3
ENGINEERING TRIPOS PART IIB

Tuesday 1 May 2018 2.00 to 3.40

Module 4F7

STATISTICAL SIGNAL ANALYSIS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Consider the following gradient descent algorithm

h(n) = h(n−1)+µ
(
p−Rh(n−1)

)
, n > 0,

where R is a positive definite square matrix, h(0) and p are vectors, and µ is a scalar.

(i) Assuming h(n) converges to a limit h∗, find h∗. [10%]

(ii) Deduce conditions on µ that would ensure h(n) converges regardless of the
initial vector h(0) chosen. Carefully explain how the eigenvalues of the matrix R
influence the convergence speed. (Hint: you may use the fact that Ak→ 0 when all
the eigenvalues of the matrix A have modulus strictly less than one.) [20%]

(b) The gradient descent algorithm is modified to

h(n) = h(n−1)+µS
(
p−Rh(n−1)

)
, n > 0,

where the step-size is now µS for some matrix S and scalar µ . Find the optimal matrix S
that reduces the sensitivity of the convergence of h(n)→ h∗ on the eigenvalue spread of
the matrix R. [15%]

(c) Adaptive filters are commonly used for prediction. The aim is to form a linear
predictor of the real valued signal {x(n)} using only noisy measurements of it:

u(n) = x(n)+ v(n)

where v(n) is zero mean white noise with variance σ2
v and E{x(n)v(m)} = 0 for all

integers n,m.

(i) Give the M-tap Least Mean Square (LMS) algorithm, with all quantities
carefully defined, for designing a linear predictor for {x(n)}. (You may use the
following standard notation: write the LMS algorithm as h(n) = h(n− 1) + · · ·
where h(n) is the vector of filter coefficients being updated by the LMS algorithm.)

[30%]

(ii) State the range of values of step-size for which the LMS converges in mean.
Express this limit point,

lim
n→∞

E{h(n)},

in terms of the autocorrelation matrix of {x(n)}. [25%]
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2 We have repeated observations of a random variable X through

Yn = X +Vn for n = 1,2, . . .

where {Vn} is an independent and identically distributed zero-mean scalar noise sequence,
independent of X , with variance E

(
V 2

n

)
= σ2

v . Also, E (X) = 0 and E
(

X2
)
= σ2

0 .

(a) Let X̂n−1 be an estimate of X using {Y1, . . . ,Yn−1}. Upon receiving Yn, the estimate
of X is updated to

X̂n = Gn

(
Yn− X̂n−1

)
+ X̂n−1.

(i) Find X̂0 which results in the estimate being unbiased for all n. [10%]

(ii) Find the value of the gain Gn that minimises the mean square error
E
{
(X̂n−X)2

}
. Carefully detail your derivation. [40%]

(b) The Kalman filter for estimating X can be expressed as

X̂n = X̂n−1 +
σ2

0
nσ2

0 +σ2
v

(
Yn− X̂n−1

)
.

(i) Using this equation find an expression for X̂n in terms of X̂0 and Y1, . . . ,Yn. [20%]

(ii) Compute the variance of the Kalman filter estimate and that of the sample
mean estimate,

1
n

n

∑
i=1

Yi,

and thus conclude which estimator is better. [30%]
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3 Consider the following Markov random process

Xk+1 = Xk +Wk+1, k = 0,1, . . .

where X0 = 0 and W1,W2, . . . is a sequence of independent and identically distributed
random variables with common probability mass function (pmf) f (i) such that
∑

∞
i=−∞

f (i) = 1. That is, Wk (for k = 1,2, . . .) are integer valued random variables.

(a) Find Pi, j = Pr(Xk+1 = j | Xk = i). [10%]

(b) Let
Yk = Xk +dVk, k = 1,2, . . .

where V1,V2, . . . are independent Gaussian random variables with zero mean and unit
variance and d is a positive constant.

(i) Find p(x1,y1, . . . ,xn,yn) which is the joint probability mass and density
function of X1,Y1, . . . ,Xn,Yn evaluated at x1,y1, . . . ,xn,yn. [10%]

(ii) Given the conditional pmf p(xn | y1, . . . ,yn), find p(xn+1 | y1, . . . ,yn+1). [20%]

(c) Let X1
1:n,X

2
1:n, . . . ,X

N
1:n be N independent samples from p(x1, . . . ,xn), the joint

probability mass function of X1, . . . ,Xn.

(i) Give the values of the weights w1
n,w

2
n, . . . ,w

N
n so that

1
N

N

∑
i=1

wi
n

is an unbiased estimate of p(y1, . . . ,yn). [10%]

(ii) Hence construct an importance sampling estimate of

∞

∑
x1=−∞

· · ·
∞

∑
xn=−∞

H(x1, . . . ,xn)p(x1, . . . ,xn | y1, . . . ,yn)

where H(x1, . . . ,xn) is a real-valued function of interest. [10%]

(iii) Using sequential importance sampling, extend this to an importance sampling
estimate of

∞

∑
xn+1=−∞

h(xn+1)p(xn+1 | y1, . . . ,yn+1)

where h(xn+1) is a real-valued function of interest. [20%]
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(d) Let J1, . . . ,JM be independent and identically distributed random variables with pmf

Pr(J = j) = w j
n/(

N

∑
i=1

)wi
n.

Show that the following resampled estimate

1
M

(
H(XJ1

1:n)+ . . .+H(XJM
1:n )

)
has the same expected value as the importance sampling estimate constructed in part
(c)(ii). [20%]
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4 Let X be an integer valued random variable with probability mass function (pmf)
p(i) = c/i2 for i > 0 and p(i) = 0 otherwise. Constant c is chosen to ensure that
∑

∞
i=1 p(i) = 1. We have repeated observations of the random variable X through

Yn = X +Vn for n = 1,2, . . .

where V1,V2, . . . are independent Gaussian random variables with zero mean and unit
variance.

(a) Find pk(i) = p(X = i |Y1 = y1, . . . ,Yk = yk), which is the conditional pmf of X given
observations y1, . . . ,yk. [10%]

(b) Let X1, . . . ,XN be N independent samples from a pmf q(i) where q(i) = 0 for i < 0.

(i) Using X1, . . . ,XN , give the importance sampling estimate of ∑
∞
i=0 pk(i)h(i),

where h is some real-valued function of interest. [15%]

(ii) Give the importance sampling estimate of p(y1, . . . ,yk) when c is unknown. [15%]

(c) Assume c is known.

(i) Give the importance sampling estimate of p(y1, . . . ,yk) and show that it is
unbiased. [25%]

(ii) Calculate the variance of the importance sampling estimate of p(y1, . . . ,yk)

and show that it can be written as

1
N

p(y1, . . . ,yk)
2

(
−1+

∞

∑
i=0

q(i)
pk(i)
q(i)

pk(i)
q(i)

)
.

[25%]

(iii) Find the optimal choice for q(i). [10%]

END OF PAPER
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