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 ENGINEERING TRIPOS PART IIB 

 ENGINEERING TRIPOS PART IIA 

______________________________________________________________________ 

 

 28th  April 2017        2 to 3.30 

______________________________________________________________________ 

 

 

 Module 4M12 

 

 PARTIAL DIFFERENTIAL EQUATIONS AND VARIATIONAL METHODS 

 

 Answer not more than three questions. 

 

 All questions carry the same number of marks. 

 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Engineering Data Book  

 

 

10 minutes reading time is allowed for this paper. 

 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 
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1  (a) The three-dimensional delta function, )(x , satisfies 

 

   0,0)(  xx ;          1)( 
V

dVx  , 

for any volume V enclosing the origin. Consider the trial solution )()( xtf  of the Poisson 

equation 

 

  )(2 x f  . 

Show that  

    
x

x
4

1
)()( tf  

is a solution to this equation in the sense that  

 

     

   0,0)(2  xtf ;           1)(2 
RV

t dVf  , 

where RV  is a spherical volume centred on the origin.     [30%]

  

 

(b) Deduce that the solution to  

 

   )(2 xSf   , 

 

where )(xS  is a general source term, is 

  

    



 Vd

S
f

xx

x
x

)(

4

1
)(


  . [20%] 

 

(c) An electrostatic field E whose scalar potential is V is governed by  

 

   V EE , , 

      

where   is the permittivity of the medium (a constant) and   the charge density. If  

)(x  is a known function of position write down the corresponding expression for V 

and deduce that 

    (cont. 
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 

 



 Vd

3

)(

4

1
)(

xx

xxx
xE




. [25%] 

    

       

(d) Consider the situation where )(x  is localised in space and centred around the 

origin. We wish to know the potential at large distances from the source. Noting that  

      

 

     2/1221
2


 xxxxxx , 

 

show that the far-field potential may be expressed as the power series  

 

    












  VdVdV )()(
1

4

1
3

xx
x

x
x

x
x 


 .  [25%] 
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2  (a) A disturbance consists of the superposition of two one-dimensional waves, 

 

         txkAtxkAtx 220110 coscos,   . 

 

If the wavenumbers and frequencies of these two waves are close, kkk  12  and 

  12 , show that this represents a slowly modulated wave train of the form 

 

         txkjtxAtx 00exp),(,    ,        (1) 

 

where   2210 kkk  ,   2210    and the amplitude function ),( txA  

propagates at the speed  k .       

             [25%] 

 

(b) A slowly-modulated, one-dimensional, wave train consists of a continuous 

distribution of wavenumbers centred around the mean value 0k . It can be represented as  

 

                          )(,exp)(, kdktkxjkatx  ,  

 

where )(k  is the dispersion relationship. If the amplitude )(ka  is sharply peaked 

around  0k , we may write  

                            
0

00 )()( 









dk

d
kkkk


 . 

 

Show that, if we substitute for )(k  using this approximation, then the disturbance 

takes the form of Eqn. (1) above, where )( 00 k   and the amplitude function has the 

form 

 

                                tdkdxAtxA 0)(),(    [45%] 

 

Deduce the group velocity for a one-dimensional wave train. 

 

(c)   The dispersion relationship for deep-water surface gravity waves is gk2 , 

where g is the gravitational acceleration. Calculate the phase and group velocities and 

describe the wave pattern that results from a localised disturbance, noting the different 

roles played by the phase and group velocities in that pattern.  [30%] 
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3  (a) If a, b and c are vectors, and  

 

      cbcba    , 

 

find expressions for  and  .         [20%] 

 

(b) Given two 44  matrices A and B such that A is symmetric and B antisymmetric, 

calculate the trace of AB. Note that the trace is the sum of the diagonal elements. [25%]   [25%] 

 

(c) If F is a vector field, express  F  in terms of the gradient  , divergence 

   and Laplace 2  operators. [25%] 

 

(d) If F is a vector field, express   FF   in terms of the divergence   and 

gradient   operators . [30%]  

 

You may use the contracted epsilon identity 

 

    jlimjmilklmijk    
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4  Consider the differential equation  

 

    1
2

2

 u
dx

ud
 ,     (2) 

 

in the interval ]2/,0[   with the boundary conditions  

 

    0,0)0(  dxduu  at 2/x . 

 

In this question we use  

 

    xsin  

as a basis function. 

 

(a) Deduce the weak form of Eqn. (2).  [10%] 

 

(b) Calculate an approximate solution for )(xu  using the Galerkin method with the 

trial function 

    xcu sin1  , 

 

where 1c  is a constant to be determined. Explain why this choice of trial function is 

compatible with the solution of Eqn. (2).  [30%] 

 

(c) Deduce the equivalent variational form of Eqn. (2). [20%] 

 

(d) Calculate an approximate solution for )(xu  using the Rayleigh-Ritz method with 

the trial function  

    xcu sin2  , 

 

where 2c  is a constant to be determined.  [20%] 

 

 

 (e)  Compare the above two approximate solutions with the exact solution of 

Eqn. (2) at 2and83,4,8 x . Sketch the three solutions. [20%] 

 

    END OF PAPER 


