Undergraduate Teaching 2023-24

Engineering Tripos Part IIA, 3D1: Geotechnical Engineering I, 2023-24

Engineering Tripos Part IIA, 3D1: Geotechnical Engineering I, 2023-24

Not logged in. More information may be available... Login via Raven / direct.

PDF versionPDF version

Module Leader

Dr S Stanier


Dr S Stanier, Prof S Haigh

Lab Leader

Prof S Haigh

Timing and Structure

Michaelmas term. 16 lectures.


As specific objectives, by the end of the course students should be able to:

  • Classify soils and assess their fundamental properties.
  • Specify appropriate compaction criteria from soil laboratory data.
  • Calculate vertical profiles of pore water pressure, total and effective stresses.
  • Determine soil compressibility and calculate uniform ground settlements.
  • Determine isochrones of excess pore pressure for 1D transient flows.
  • Determine time-rate of consolidation and ground settlement.
  • Specify “drained” or “undrained” direct shear tests, and interpret them.
  • Use Mohr circles to interpret triaxial tests.
  • Perform basic upper and lower bound limit analyses.
  • Analyse limiting equilibrium with slip planes and slip circles as mechanisms.
  • Search for the least optimistic mechanism of failure in soil.
  • Perform simple design calculations of a strip footing on clay and sand.
  • Perform basic estiamtes for the settlement of foundations


Structures depend for their stability on the ground which supports their foundations. Furthermore, many structures are actually built of soil (road, rail and flood embankments, dams, road bases and rail beds, waste repositories) or have to retain soil as their prime purpose (basement walls, quay walls, tunnels and pipes). So all civil and structural engineers should understand soil behaviour and be able to apply this understanding in geotechnical engineering design and construction. This course introduces soil as a product of nature and focuses on its material properties and behaviour in engineering applications. Soil comprises solid grains, water and sometimes air. The solid phase is an interlocking aggregate of soil grains that can deform and rearrange. The fluid phase inhabits an interconnected pore space through which flow can take place. Total stresses, arising from loads and from the self-weight of the soil itself, have to be partitioned between these two phases. Pore pressures arise firstly from hydrostatics, but are modified by the effects of viscous drag when the fluid is flowing. Once pore pressures have been discounted, the remaining effective stresses must act between the grains, giving rise to deformations of the granular skeleton and therefore to displacements at the ground surface and possible distortions of any connected superstructures. This partition of stress is known as the principle of effective stress and is the key to understanding soil behaviour.

If loads or deformations are imposed on a saturated soil, whose pore fluid can therefore be regarded as incompressible, and if the loads are applied so quickly that fluid has no time to escape, then the process is described as undrained and the soil must deform at constant volume.  If, on the other hand, the loads or deformations are imposed so slowly that the fluid can move completely freely, the process is described as drained and the soil deforms at constant pore pressure.The process of transient flow, taking soil from an undrained to a drained state, can lead either to consolidation (fluid drains out, and soil gets denser and stronger) or swelling.

In addition to being prone to volume changes, soils are also relatively weak in shear – perhaps three orders of magnitude weaker than concrete. Once again, the possibility of transient flow dictates the outcome. After large shear distortions, undrained soils ultimately display a constant undrained strength. In drained conditions, the strength of the soil is dictated by friction and interlocking between its grains. Ultimately the soil will display a constant internal angle of friction, familiar as the angle of repose of dry sand in sand dunes. Given enough time, underwater slopes in clay also rest at their angle of repose, as do sands. Tests to establish the drained (sand-like) or undrained (clay-like) strengths of soils, will be introduced and explained. 

Once it has been established that a given undrained shear strength, or alternatively a given angle of internal friction, can be relied upon, the next step is to be able to make calculations to demonstrate whether a soil body will remain stable under applied loads, for example by a structural foundation. This module extends the plastic analysis of structures, first encountered in Part IB Structures, to bodies made of soil. Both “upper bound” style calculations based on assumed failure mechanisms, and “lower bound” calculations based on demonstrating equilibrium through Mohr’s circles, will be introduced. 

Topic 1: The granular continuum

Basic definitions of soil constituents and their packing  

Phase relationships. Density of grains and water; voids ratio and saturation; water content, unit weight.  Classification of soils using particle size distribution curves; Relative density of sands.  Consistency limit tests – plastic limit, liquid limit, and plasticity index of clayey soils.

Soils in nature and the principle of effective stress  

Deposition and formation of natural soils.  Loading history: normally consolidated and over-consolidated soils. The principle of effective stress. Stresses beneath level ground: total stresses, hydrostatic pore pressures, effective stresses.  Water table, capillary zone.  

Steady state seepage 

Steady 1D flow through soil: seepage potential, hydraulic gradient, hydraulic conductivity

Topic 2: Compression and Compaction

Artificially formed soils: compaction

Compaction tests: compaction energy, dry density, optimum water content, degree of saturation. Controlling compaction in the field: tools and techniques, monitoring dry density, relative compaction. Brittleness and wetting-collapse of clayey soils if compacted dry of optimum, softness if compacted wet of optimum.

Compressibility and stiffness 

Uniaxial compression of a skeleton of elastic, crushable grains by voids migration. Oedometer test, ultimate drained data of compression versus effective stress. Compressibility and stiffness of clays and sands.

Topic 3: Consolidation

Transient flow & the oedometer test

Excess pore pressures due to 1D loading. 1D consolidation of a unit cell with single drainage: the use of isochrones to describe transient flow. Interpreting transient compression in oedometer tests: consolidation parameters. Time-rate of consolidation for normally consolidated and overconsolidated soils (including swelling). Creep.

One-dimensional consolidation in the field

Using representative oedometer data to assess field settlements and time-rate of settlement. Application to land reclamation. Use of surcharging to reduce consolidation times. Consolidation due to changes in the groundwater regime.

Topic 4: The shear strength of soil

“Direct” and “simple” shear tests: undrained and drained

Direct/simple shear test. “Drained” tests at constant effective normal stress. Dilation / contraction to a critical state, mobilised angles of friction and of dilatancy; typical data of a sand and a clay. Residual friction of polished slip surface in pure clay.“Undrained” tests at constant volume; typical data of a sand and a clay. Limiting shear speeds for drained and undrained behaviour in a shear box test.

Topic 5: Limiting equilibrium of geotechnical structures

Shallow foundation design in clay : vertical loading

Bearing capacity of a shallow strip footing on clay. Upper bounds; kinematically admissible mechanism, shear strength, global work or equilibrium. Slip circles and slip planes for non-dilatant soils. Lower bounds; statically admissible stress field, shear strength, equilibrium everywhere. Uniform undrained shear resistance.

Shallow foundation design in sand : vertical loading

Bearing capacity of a shallow strip footing on sand. Uniform angle of friction; stress discontinuities, dry sand. Weightless soil. Upper and lower bounds.

Settlement of foundations

Boussinesq's solution. Stresses beneath a loaded area. Settlement prediction for shallow foundations

Examples papers

There will be three examples papers directly related to the lecture course, given out in weeks 1, 3 and 6 on the following topics:

  • Basic relationships for a granular continuum
  • Consolidation and swelling
  • Soil strength, and the limiting equilibrium of soil bodies


Atterberg Limit Tests

Learning objectives

  • Determine the water content of a soil
  • Determine the liquid limit of fine-grained soils
  • Determine the plastic limit of fine-grained soils
  • Classify soils
  • Assess the strength of soils at tje liquid limit

Practical information:

  • Sessions will take place in the Structures Research Laboratory, during the first 3-5 weeks of the term
  • Sign up for laboratory sessions will be on moodle, as advertised on the site.
  • This activity involves a preliminary quiz, available on the moodle site, to be completed prior to the laboratory session


Full Technical Report:

Students will have the option to submit a Full Technical Report.


Please refer to the Booklist for Part IIA Courses for references to this module, this can be found on the associated Moodle course.

Examination Guidelines

Please refer to Form & conduct of the examinations.


This syllabus contributes to the following areas of the UK-SPEC standard:

Toggle display of UK-SPEC areas.


Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.


Apply appropriate quantitative science and engineering tools to the analysis of problems.


Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.


Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.


Ability to use fundamental knowledge to investigate new and emerging technologies.


Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.


Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.


A thorough understanding of current practice and its limitations and some appreciation of likely new developments.


A comprehensive understanding of the scientific principles of own specialisation and related disciplines.


A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.


An understanding of concepts from a range of areas including some outside engineering, and the ability to apply them effectively in engineering projects.

Last modified: 29/09/2023 09:17