
Module Leader
Lecturers
Prof E Mastorakos and Prof P Davidson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3A1 assumed; 3A3 useful
Aims
The aims of the course are to:
- introduce the physical basis of turbulence as well as its practical implications for engineers; turbulence is a common feature of fluid flows in the atmosphere and the ocean, in aerodynamics and in chemically-reacting flows such as combustion.
- introduce the basic rules of vortex dynamics, which is identified as controlling energy transfers between different scales in a turbulent flow.
Objectives
As specific objectives, by the end of the course students should be able to:
- be aware of the turbulent nature of most flows of interest to engineers and its influence on the transfer processes involving momentum, heat and mass.
- interpret fluid motion in terms of the creation and transport of vorticity.
- understand energy transfer between mean flow and turbulent fluctuations (Reynolds stresses).
- understand energy transfer between the different scales of turbulence and the mechanism of dissipation.
- be aware of the more common phenomenological models of turbulence currently used by engineers and of their underlying assumptions and limitations.
Content
Turbulence and Vortex Dynamics (16L)
- Introduction to turbulence: Pictures of turbulence. Universality of turbulence in flows as the final result of instabilities. Engineering consequences.
- Some simple illustrations of vortex dynamics: The persistence of rotation (angular momentum) in flows. Another description of fluid dynamics: the vorticity equation. Lift and induced motion, with application to aerodynamics and hovering insects. Swirling flows with application to tornadoes, hurricanes and tidal vortices.
- Basic concepts in turbulence theory: Order from chaos - Reynolds decomposition and Reynolds equation. Kinetic energy - Production and Dissipation. Introduction to the different scales in Turbulence, from the integral scale to Kolmogorov's micro-scale. Wall-bounded shear flows. Vortex dynamics at work at the large and small scales (worms).
- Phenomenological models of turbulence: Prandlt's Mixing length and k - e model: their assumptions and limitations. Other models. What can be expected from these turbulence models in terms of velocity and heat transfer.
- Current trends in industrial fluid mechanics.
Booklists
Please see the Booklist for Group A Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 23/05/2019 15:52