
Leader
Lecturer
Dr P Robertson
Timing and Structure
Lent term. 16 lectures (including examples classes). Assessment: 100% exam
Prerequisites
3B1 assumed.
Aims
The aims of the course are to:
- introduce students to state-of-the-art practice in electronic instrumentation systems, including the design of sensor/transducer elements for physical measureands, their respective interface electronics and precision measurement techniques.
Objectives
As specific objectives, by the end of the course students should be able to:
- design circuits to interface to simple temperature and strain measurement devices.
- demonstrate a knowledge of frequency sources and measurement circuits.
- measure high currents using 4 terminal devices and transformers.
- describe how micromachined silicon sensors are made, their operation and merits.
- describe a range of ultrasonic transducers, their applications and associated electronics.
- understand the operation of electromagnetic sensors for flux, current and position sensing.
- design and analyse sensor circuits and estimate signal to noise ratios.
- design an appropriate interface circuit for a sensor with given characteristics.
- produce an outline design of an instrumentation system to monitor a range of physical parameters including pressure, temperature, flow, position and velocity.
Content
Temperature & Strain Sensors and Interface Electronics (3L, Dr P A Robertson)
- Description of thermocouples, thermistors and strain gauges and associated electronics.
- Drift, noise and bandwidth considerations, signal to noise ratio improvement.
Precision Measurements (2L, Dr P A Robertson)
- Voltage measurements: thermal emfs, guarding, shielding. Precision ADC methods
- Time and frequency measurements: stable frequency sources, timer-counter techniques
- Current measurements: current transformers, 4-terminal measurements of high current
Electromagnetic devices (4L, Dr P A Robertson)
- Selected revision of electromagnetic theory and its application to electronic sensors.
- Flux gate, inductive and Hall effect magnetic devices and interface electronics.
- Synchronous detection method applied to fluxgate sensor.
- Laser range finder and velocity sensing
Microfabricated sensors (3L, Dr P A Robertson)
- Overview of silicon micromachining techniques and their application in accelerometers, gyroscopes, automotive air-bag sensors and pressure transducers. Physical priciples of operation and related signal processing electronics.
Ultrasonic transducers (3L, Dr P A Robertson)
- Description of piezo-electric devices, theory and application in practical sensor designs.
- Case studies of the Polaroid range finder, Doppler motion detector and an electronic gas meter.
- Electronic circuits for driving transducers and signal detection methods.
Practical Demonstration Lecture (1L, Dr P A Robertson)
- Evaluation of micromachined accelerometers and gyroscopes.
- Flux-gate magnetometer using synchronous detection
- Ultrasonic motion and distance sensing.
Booklists
Please see the Booklist for Group B Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 31/05/2017 10:00