
Leader
Lecturers
Prof A Seshia and Professor E A Hall
Timing and Structure
Lent term. Lectures and coursework. Assessment: 100% coursework.
Aims
The aims of the course are to:
- link engineering principles to understanding of biosystems in sensors and bioelectronics
Objectives
As specific objectives, by the end of the course students should be able to:
- extend principles of engineering to the development of bioanalytical devices and the design of biosensors.
- understand the principles of linking cell components and biological pathways with energy transduction, sensing and detection
- appreciate the basic configuration and distinction among biosensor systems.
- demonstrate appreciation for the technical limits of performance.
- make design and selection decisions in response to measurement problems amenable to the use of biosensors.
Content
This course covers the principles, technologies, methods and applications of biosensors and bioinstrumentation. The objective of this course is to link engineering principles to understanding of biosystems in sensors and bioelectronics. It will provide the student with detail of methods and procedures used in the design, fabrication and application of biosensors and bioelectronic devices. The fundamentals of measurement science are applied to optical, electrochemical, mass, and pressure signal transduction. Upon successful completion of this course, students are expected to be able to explain biosensing and transduction techniques, as well as design and construct biosensor instrumentation.
Introduction
- Overview of Biosensors
- Fundamental elements of biosensor devices
- Engineering sensor proteins
Electrochemical Biosensors
- Electrochemical principles
- Amperometric biosensors and charge transfer pathways in enzymes
- Glucose biosensors
- Engineering electrochemical biosensors
Optical Biosensors
- Optics for biosensors
- Attenuated total reflection systems
Acoustic Biosensors
- Analytical models
- Acoustic sensor formats
- Quartz crystal microbalance
Micro- and Nano-technologies for biosensors
- Microfluidic interfaces for biosensors
- DNA and protein microarrays
- Microfabricated PCR technology
Diagnostics for the real world
- Communication and tracking in health monitoring
- Detection in resource limited settings
Coursework
The coursework will be assessed on two marked assignments. The first assignment will involve a laboratory session illustrating the functional demonstration of glucose sensor technology. The second assignment will involve a laboratory session illustrating the principle of a quartz crystal microbalance and related acoustic sensor technologies.
Coursework | Format |
Due date & marks |
---|---|---|
Coursework activity #1 Glucose biosensors Learning objectives:
|
Individual Report anonymously marked |
Mon week 5 [30/60] |
[Coursework activity #2 Quartz crystal microbalance] Learning objectives:
|
Individual Report anonymously marked |
Wed week 9 [30/60] |
Booklists
Please see the Booklist for Group G Courses for references for this module.
Examination Guidelines
Please refer to Form & conduct of the examinations.
UK-SPEC
This syllabus contributes to the following areas of the UK-SPEC standard:
Toggle display of UK-SPEC areas.
Last modified: 17/05/2018 14:26