ENGINEERING

Part IB Paper 7: Mathematical Methods (2)

Linear Algebra

Examples Paper 1

Straightforward questions are marked $\dagger \quad$ Tripos standard questions are marked * Apart from the questions marked MATLAB, all questions can be done by hand.

Vector Spaces

$1 \dagger$ Show that the vector space spanned by $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{t}$ and $\left[\begin{array}{lll}0 & 1 & 0.5\end{array}\right]^{t}$ is the same as that spanned by $\left[\begin{array}{lll}2 & 1 & -0.5\end{array}\right]^{\mathrm{t}}$ and $\left[\begin{array}{lll}1 & -1 & -1\end{array}\right]^{\mathrm{t}}$.
$2 \dagger \quad$ A vector space S is spanned by the vectors $\left[\begin{array}{lll}1 & 2 & 0\end{array}\right]^{\mathrm{t}},\left[\begin{array}{lll}-1 & 3 & 1\end{array}\right]^{\mathrm{t}}$ and $\left[\begin{array}{lll}3 & 1 & -1\end{array}\right]^{\mathrm{t}}$.
(a) Determine the dimension of S and find a basis.
(b) Determine whether the vector $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{t}}$ lies in S.
(c) Find a basis of the space T consisting of all vectors orthogonal to every vector in S.
(d) Express $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{\mathrm{t}}$ as $\underline{s}+\underline{t}$ where \underline{s} is in S and \underline{t} is in T.

3 The vectors $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{t}}$ and $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]^{\mathrm{t}}$ span the column space of the 3×2 matrix \mathbf{A}.
What is the rank of \mathbf{A} ? Show that the most general form for \mathbf{A} is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

provided $a d-c d \neq 0$. Explain why this condition is necessary.

Matrix manipulation and LU Decomposition

$4 \dagger \quad$ Find a 3×2 matrix \mathbf{D} such that $\quad \mathbf{A} \mathbf{B}=\left[\begin{array}{lll}2 & 1 & 6 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 6 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 6 & 2 \\ 2 & 1 & 3 \\ 1 & 3 & 4\end{array}\right] \mathbf{D}=\mathbf{C} \mathbf{D}$
Find a 3×3 matrix \mathbf{P} such that $\mathbf{A}=\mathbf{C} \mathbf{P}$. If $\mathbf{B}=\mathbf{Q} \mathbf{D}$, what is the relationship between \mathbf{P} and \mathbf{Q} ?
$5 \dagger$ Perform the LU factorisation of:
(a) $\left[\begin{array}{ccc}3 & 1 & 2 \\ -3 & 3 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & 1 \\ 6 & 4 \\ -2 & 0\end{array}\right]$

6 Perform LU factorisation with partial pivoting (i.e. decomposition of the form $\mathbf{P A}=\mathbf{L U}$) on the matrix

$$
\left[\begin{array}{ccc}
-1 & 2 & 0 \\
1 & 1 & 4 \\
2 & -2 & 4
\end{array}\right]
$$

What is the matrix \mathbf{M}, where $\mathbf{A}=\mathbf{M U}$?

$7 . \dagger$ (OCTAVE or MATLAB)

$$
\mathbf{A}=\left[\begin{array}{ccccc}
2.0 & 2.1 & -4.6 & 3.1 & -2.5 \\
1.6 & 8.4 & 1.2 & -0.8 & 5.4 \\
4.0 & 1.0 & -2.0 & 3.0 & 1.0 \\
1.2 & 1.9 & -2.2 & 1.0 & -2.2 \\
0.8 & 6.6 & -0.8 & -1.0 & -2.8
\end{array}\right]
$$

Using elimination with partial pivoting, which rows of \mathbf{A} would be swapped before elimination starts? Use the LU decomposition in OCTAVE or MATLAB to find the matrices, L, \mathbf{U} and \mathbf{P}. Are any other rows swapped during the elimination?

Solution of equations and fundamental sub-spaces

8* Complete the LU factorisation of

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 3 & 1 & 1
\end{array}\right]
$$

What is the general solution, \mathbf{x}, to $\mathbf{A x}=\mathbf{b}$ if:

$$
\text { (i) } \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \text { (ii) } \mathbf{b}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]
$$

9 Find a basis for each of the four fundamental subspaces of the matrix \mathbf{A} in Q 8.

10 Write down a matrix with the required property, or explain why no such matrix exists, for:
(a) Column space contains $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and row space contains $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2\end{array}\right]$
(b) Column space has basis $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and nullspace has basis $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$
(c) Column space $=R^{4}$, row space $=R^{3}$.

11 The matrix $\mathbf{A}=\left[\begin{array}{ccc}2 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & -1 & 3 / 2\end{array}\right]$ is extended to form a 6×3 matrix using the identity matrix \mathbf{I}.

$$
\text { [A : I] }] \text { [}=\left[\begin{array}{cccccc}
2 & 2 & 1 & 1 & 0 & 0 \\
3 & 4 & 2 & 0 & 1 & 0 \\
1 & -1 & 3 / 2 & 0 & 0 & 1
\end{array}\right]
$$

Manipulate the rows of the extended matrix using scaling and addition and subtraction of rows until it is in the form [IB]. Show that $\mathbf{A} \mathbf{B}=\mathbf{I}$ and explain why this method of finding the inverse works.

Write down a matrix equation $\mathbf{A x}=\mathbf{b}$ which calculates the potential differences across the resistors b_{i} (in the direction shown by the arrows), in terms of the actual potentials at the nodes, x_{i}. For example:

$$
x_{4}-x_{3}=b_{\mathrm{III}}
$$

Each entry in the matrix \mathbf{A} will only contain $-1,0$ or 1 .
(a) For existence of a solution to $\mathbf{A x}=\mathbf{b}, \mathbf{b}$ must lie in the column space of \mathbf{A}, and therefore have no component in the left-nullspace. Calculate a basis for the left-nullspace of \mathbf{A}. What is the physical interpretation of \mathbf{b} not having a component in the left-nullspace? (Remember Kirchoff's Voltage Law.)
(b) In general a solution \mathbf{x} of $\mathbf{A x}=\mathbf{b}$ can have any component of the nullspace of \mathbf{A} added to it without affecting \mathbf{b}. Calculate a basis for the nullspace of \mathbf{A}.
What is the physical interpretation of the nullspace?

13* A matrix A has an $\mathbf{L} \mathbf{U}$ decomposition given by $\mathbf{P A}=\mathbf{L} \mathbf{U}$, where

$$
\mathbf{P}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \mathbf{L}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0.5 & 1 & 0 & 0 \\
1 & -0.5 & 1 & 0 \\
0.5 & 0.5 & 0.5 & 1
\end{array}\right], \quad \mathbf{U}=\left[\begin{array}{ccccc}
-2 & 2 & 1 & 2 & -4 \\
0 & 1 & 2 & 0 & -1 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Show that the vector

$$
\mathbf{b}=\left[\begin{array}{c}
-1 \\
2 \\
5 \\
1
\end{array}\right]
$$

lies in the column space of \mathbf{A}.
(b) Find the most general solution \mathbf{x} to the equation $\mathbf{A x}=\mathbf{b}$.
(c) Explain, without calculation, how you would find all vectors \mathbf{b} for which $\mathbf{A x}=\mathbf{b}$ does not have a solution.

Relevant Paper 7 IB Tripos Questions:

2002 Q4 (a-c), 2003 Q4, 2004 Q4, 2005 Q4 \& 5, 2006 Q5a, 2007 Q4a, 2008 Q5 (a-c), 2010 Q5

Answers

N.B. Remember that the basis of a vector space is not unique, so you may get different answers to some of those listed here and still be correct.
2.
(a) Dimension 2. Any 2 of the vectors.
(b) No. (c) $\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right]$
(d) $\underline{s}=\left[\begin{array}{c}8 / 15 \\ 7 / 30 \\ 5 / 6\end{array}\right] \underline{t}=\left[\begin{array}{c}7 / 15 \\ -7 / 30 \\ 1 / 6\end{array}\right]$
3. 2
4. $\mathbf{D}=\left[\begin{array}{ll}2 & 1 \\ 6 & 2 \\ 1 & 1\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \quad \mathbf{Q}=\mathbf{P}^{\mathbf{t}}$
5.
(a) $\mathbf{L}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$
$\mathbf{U}=\left[\begin{array}{lll}3 & 1 & 2 \\ 0 & 4 & 3\end{array}\right]$
(b) $\mathbf{L}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 3 & 1 & 0 \\ -1 & 1 & 1\end{array}\right] \quad \mathbf{U}=\left[\begin{array}{ll}2 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
6. $\mathbf{M}=\left[\begin{array}{ccc}-0.5 & 0.5 & 1 \\ 0.5 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \quad \mathbf{U}=\left[\begin{array}{ccc}2 & -2 & 4 \\ 0 & 2 & 2 \\ 0 & 0 & 1\end{array}\right] \quad \mathbf{P}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \quad \mathbf{L}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0.5 & 1 & 0 \\ -0.5 & 0.5 & 1\end{array}\right]$
7. Rows 4 and 5 are swapped in addition to rows 1 and 3.
8. $\mathbf{L}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1\end{array}\right], \mathbf{U}=\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$, (a.i) $\left[\begin{array}{c}-3 \\ 2 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$ (a.ii) no solution
9. Nullspace $\left[\begin{array}{c}2 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$ Rowspace $\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]$, Column space $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

Left-nullspace $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
10. (a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right]$, (b-c) no matrix exists.
11. $\mathbf{B}=\left[\begin{array}{ccc}2 & -1 & 0 \\ -\frac{5}{8} & \frac{1}{2} & -\frac{1}{4} \\ -\frac{7}{4} & 1 & \frac{1}{2}\end{array}\right]$
12. $\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5}\end{array}\right]$ (a) left-nullspace $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$ (b) nullspace $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
13. (a) Find $\mathbf{c}=\mathbf{U x}$ by solving $\mathbf{L} \mathbf{c}=\mathbf{P b}$. Then show that $\mathbf{U x}=\mathbf{c}$ can be solved.
(b) $\mathbf{x}=\left[\begin{array}{c}-2 \\ -2 \\ 0 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-1.5 \\ -2 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{c}-1 \\ 1 \\ 0 \\ 0 \\ 1\end{array}\right]$

