
Engineering 'fripos Part IA 	 FIRST YEAR 

Paper 4: Mathematical Methods 

COMPUTING 

Examples Paper 2 

Straightforward questions are marked t. 

Tripos standard (but not necessarily Tripos length) questions are marked *. 

Hints and answers can be found at the back of the paper. 


Questions 1 to 7 are about numerical programming. The Digital Circuits and Information 
Processing course (Paper 3) also includes material on binary representation, which you 
might find useful when attempting these questions. You are encouraged to search on-line 
for the IEEE standard relating to floating point representation (IEEE-754). 

1. t (a) Convert the following unsigned binary numbers to decimal. 
(i) 1 (ii) 11111111 (iii) 11011101 
(iv) 1.1 (v) 0.01 (vi) 10.00011 

(b) 	Convert the following decimal numbers to a standard unsigned binary repre­
sentation (not an exponential representation). 

(i) 4 (ii) 128 (iii) 93 
(iv) 2.5 (v) 1.75 (vi) 8.2 

2. 	 (a) Convert the following IEEE standard single precision floating point numbers 
into decimal. 

(i) O::-r-/":-::10=0=00=0=01;-.,..--:'O=O~OO=O~OO=O=OO=O=OO=O=OO=O=O0=0=0=00::-1/rei 

(ii) 11' 01111111 /10000000000000000000000 / 

(iii) I 0 /11000000 I 01100000000000000000001 , 

(iv) I 0 / 00000000 I 00000000000000000000000 I 
(b) 	Convert the following decimal numbers into IEEE standard single precision float­

ing point format. 

(i) 	 1.0 (ii) -6.0 (iii) 0.21875 (iv) 8 x 106 

(c) 	 Optional for students with considerable programming experience and access to a 
computer. Write a program which directly accesses the computer's memory to 
display the stored bit patterns for arbitrary float variables. Use your program 
to check your answers to parts ( a) and (b). 
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3. 	Work out the largest and smallest numbers that can be stored in the IEEE standard 
single precision floating point format. Assume that all mantissas are normalised, that 
the exponent 11111111 is reserved for the special number 00 and that the exponent 
00000000 is reserved for the special number O. 

4. 	 Consider the following segment of C++ code (note that the numbers in the variable 
declarations also appear in Question 2). 

float f1 = 1.0; double dl 1.0; 

float f2 -6.0; double d2 -6.0; 

float f3 0.21875; double d3 = 0.21875; 

float f4 = 8.0E+6; double d4 8.0E+6; 

float f5, f6; double d5, d6; 


f5 = fl + f3; d5 dl + d3; 

f6 = f3 + f4; d6 d3 + d4; 


What would you expect to be the final contents of the variables f5, f6, d5 and d6? 
Justify your answers. 

5. 	 The following C++ code segment is compiled and run on a standard PC. 

const float fl 0.9; 

const float f2 0.5; 

const float f3 0.9 - lE-7; 

cout.precision(20); II Make sure cout displays lots of decimal places 

cout « "fl is " « fl « endl; 

cout « "f2 is « f2 « endl;
" 

cout « "f3 is " « f3 « endl; 

cout « "fl - f3 is " « fl - f3 « endl; 


To the user's surprise, the console displays: 

fl is 0.89999997615814208984 

f2 is 0.5 

f3 is 0.89999991655349731445 

fl - f3 is 5.9604644775390625e-08 


Explain why this isn't really so surprising. 

6. 	 Consider the following C++ code segment. 

float x = 1.5707963; 

double y = 1.5707963; 

cout « Iftan(x) is " « tan(x) « endl; 

cout « "tan(y) is If « tan(y) « endl; 
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When the code is executed, the console displays: 

tan(x) is 1.32454e+07 
tan(y) is 3.73205e+07 

Explain why there is such a huge difference between the two results. 

7. 	 * The following C++ code prints out the sequence of numbers generated by the 
difference equation Xn = 3Xn -1 - 2Xn -2 with initial values Xl and X2. 

float xl, x2, xn, xnml, xnm2; 

xl = 1.0; 

x2 = 1.00000005; 

xnm2 = xl; xnml = x2; 

for (n = 3; n <= limit; n++) { 


xn = 3.0 * xnml - 2.0 * xnm2; 
cout « n « I « xn « endl;I 

xnm2 = xnml; xnml = xn; 

} 


When executed, the code prints a sequence with Xn = 1.0 for all n. When line 3 of the 
code is changed to x2 = 1.00000006, the sequence shows Xn growing exponentially, 
becoming so large that it overflows the allowable range for a float by the time 
n = 153. Explain this behaviour. 

Questions 8 to 13 are about searching, sorting and algorithmic complexity. 

8. 	 t What is meant by algorithmic complexity? Write down the complexity of: 

(a) Printing the first number in a list of n numbers. 

(b) Finding the mean of a list of n numbers. 

(c) Adding two n x n matrices. 

(d) Multiplying two n x n matrices. 

(e) Listing all the positive n-digit decimal integers. 

9. 	 The following program implements a variation of Eratosthenes's sieve for finding 
prime numbers. 

int mainO { 
II Variation of Sieve of Eratosthenes for finding prime numbers 

int i. j; 
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const int n = 100000; 

bool prime[n]; 


II Initialise array 

for (i 2; i < n; i++) prime[i] true; 


for (i = 2; i < n; i++) 

for (j = i + 1; j < n; j++) 


if (j % i == 0) prime[j] = false; 


II Display results 

for (i = 2; i < n; i++) if (prime[i]) cout « i « endl; 


return 0; 
} 

(a) Satisfy yourself that the program does indeed find and print prime numbers. 

(b) 	What is the largest number checked to see if it is prime? 

(c) 	 What is the complexity of this implementation of Eratosthenes's sieve? Show 
how to modify one line of the program to improve the complexity to O(n3/ 2 ). 

Estimate the speedup for the case n = 100000. 

10. 	The ll-digit mobile telephone numbers of 100 Cambridge students are to be stored 
in a hash table of length 1000. Two hash functions are proposed: 

(a) 	 i = x % 1000; 

(b) 	 i = x I 100000000; 

where int x is the phone number and i is the index. Explain why one of these will 
almost certainly perform much better than the other. 

11. 	t Which of exchange sort and QuickSort would you expect to be faster for sorting a 
list of (a) 10 and (b) 1000000 items? Justify your answers. 

12. 	* The following function searches for the value of x for which the function f (x) is 
zero. It requires an initial range 10 to hi within which the root is thought to lie. 

float f(float x); II arbitrary function of x 

float find_root(float 10, float hi) 
{ 


const float limit 0.0001; II required precision 

float mid, f_mid, f_lo, f_hi; 


4 



mid = 0.5 * (hi + 10); 

if (hi - 10 < limit) return mid; 


f_mid = f(mid); f_lo f(lo); f_hi = f(hi); 

if (f_lo * f_mid < 0.0) return find_root(lo, mid); 

else return find_root(mid, hi); 


} 

(a) 	State which search principle is being used. How sensitive is the execution time 
to the required precision limit? 

(b) 	The function, while containing no obvious bugs, is not very carefully written. 
Identify the ways in which it can fail and suggest some possible improvements. 

13. 	 * Consider the following C++ implementation of the bucket sort algorithm. 

void BucketSort(int list[], int n) 
{ 

const int max_digits = 10; II maximum number of digits in an int 
const int max_size = 10000; II maximum number of elements in list 
int i, j, k, 1, digit, counts [10] , buckets [10] [max_size]; 
long long int a = 10; II can store a bigger number than a normal int 

for (i = 1; i <= max_digits; i++, a = a*10) { II loop over each digit 

for (k = 0; k < 10; k++) counts[k] = 0; II reset bucket counts 

for (j 0; j < n; j++) { II distribution pass 

digit = (list[j] % a) I (a/l0); 

buckets [digitJ [counts [digitJ] = list[j]; 

counts [digitJ++; 


} 

j = 0; II gathering pass 
for (k = 0; k < 10; k++) 

for (1 = 0; 1 < counts[kJ; 1++, j++) list[jJ = buckets[k] [lJ; 
} 

} 

The sorting algorithms presented in the lecture course all work in situ: they require 
very little memory on top of the list's own storage requirements. In contrast, bucket 
sort trades memory for speed. The algorithm sorts lists of positive integers. It 
loops over each of the integers' digits, starting with the least significant and working 
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towards the most significant. For each digit, there is a distribution pass followed by a 
gathering pass. In the distribution pass, the numbers are put into buckets depending 
on the value of the digit under consideration. In the gathering pass, the numbers are 
copied back, one bucket after another, into the original list. 

(a) Satisfy yourself 	that bucket sort works. To do this, work through the code 
by hand to sort the list {9, 692,45, 142}. Keep track of the contents of list, 
buckets and counts. 

(b) 	What is the algorithmic complexity of bucket sort? What are its memory re­
quirements as a function of n? 

Suitable past Tripos questions: 2002 Qus. lOb, 10c & 11, 2003 Qu. 10, 2004 Qus. 10 
& 11, 2005 Qu. 11, 2006 Qu. 11, 2007 Qus. 5c & 12, 2008 Qus. 11 & 12 

Hints 

1. 	 (a) The binary digits to the left of the decimal point represent 2°,21 ... 2n , while the 
digits to the right of the decimal point represent 2-1, 2-2 ... 2-m . (b) First write the 
decimal number as a sum of powers of two. For a non-integer, you'll need negative 
powers of two as well as positive powers. 

2. 	 (a) The single precision floating point format has a sign bit 8, followed by an 8-bit 
exponent e and a 23-bit mantissa m. The exponential base is 2, there is a bias of 127 
in the exponent and, since the numbers are for the most part normalised, an implicit 
leading' 1.' in the mantissa. The decimal equivalent of the stored number is therefore 

(_1)8 x 1.m x 2e- 127 

where the mantissa 1.m and the exponent e are in binary, and therefore need convert­
ing into decimal first. Let's do (i) as an example. Exponent e = 100000012 = 12910, 

Mantissa 1.m = 1.02 1.010. Number = (_1)° x 1.0 x 2129-127 = 1.0 X 22 = 4. 
(b) To convert from decimal to floating point, we divide or multiply the number by 
two until we arrive at a number which is 1 point something: this is the mantissa, 
while the exponent is deduced from the number of times we had to divide or multiply 
by two. Let's do (ii) as an example. -6.0 = -1.5 x 22. Mantissa is 1.5. Exponent is 
129 (2 after bias). Mantissa in binary is 1.1. Exponent in binary is 10000001. 

I 0 	I 10000001 I 10000000000000000000000 I 
4. 	 First of all, note that 8. OE+6 is C++ jargon for 8.0 x 106

• Before numbers are added, 
their exponents must first be matched by shifting the mantissa of the smaller number 
to the right. A double precision floating point number (ie. a double) has a 52 bit 
mantissa, compared with 23 bits for a single precision float. 
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5. 	 Note that 0.5 can be represented precisely in floating point form, since it is a simple 
power of 2 (0.5 ::::: 2-1

). But how large a mantissa do we need to represent 0.9 precisely 
in floating point form? Perhaps more than 23 bits? The difference between fl and f3 
should be 10-7 

, but the computer's answer is very different to this. However, given 
the precision with which the computer can represent fl and f3 in the first place, could 
we really expect a more accurate result? This is subtractive cancellation. 

6. 	 Because of the floating point precision, y will be closer to 1.5707963 than x. Remember 
that tan expects its argument in radians, and also note that 1.5707963 is very close 
to 7T/2. Sketch tan 8 around 8 = 7T/2. You should be able to see what's going on now. 

7. 	 First solve the difference equation by hand for the initial conditions Xl = X2 = 1.0. 
What would happen if X2 was just a tiny bit bigger than 1.0? Considering the precision 
of the floating point representation, what might x2 be after initialisation with the 
statement x2 = 1. 00000005? Might x2 = 1.00000006 lead to a different outcome? 

9. 	 (a) Remember that if j % i == 0, then j is wholly divisible by i. (c) Work through 
the program by hand for the case n = 10. You should find that you don't eliminate 
any further prime numbers beyond i = 3. This is no accident, and indicates how to 
change the limit on the i loop to improve the complexity of the algorithm. 

10. 	 A good hash function should distribute the telephone numbers evenly through the 
hash table. This way, there won't be too many collisions causing numbers to be 
stored out of position. Collisions are a bad thing, since they slow down both storage 
and retrieval. Bear in mind that all mobile telephone numbers from a particular 
service provider start with the same few digits. 

11. 	 The execution time of an O(ni) algorithm is kni. For small n, the constant of pro­
portionality k may be more important than the power i. 

12. 	 (a) Ask yourself how many extra iterations would be required if limit were halved. 
(b) The function can fail in four distinct ways. Here are typical ways to trigger each 
of the four failure modes: (i) 10 > hi; (ii) 10 0.0, hi 2.0 and f (x) = 1.0 - x; 
(iii) L10 and Lhi have the same sign; and (iv) limit is smaller than the floating 
point machine accuracy. Think of ways to fix (i), (ii) and (iv). For case (iii), the best 
we can do is to return an error code. 

13. 	 The trickiest line in the program is the one that isolates successive digits of a number: 
digit = (list[j] % a) / (a/l0); 
We start with a = 10 and then multiply a by 10 each time round the outer i loop. 
Let's illustrate the operation of this line with the number 45. Remember that this is 
integer arithmetic, so after the division by a/l0 any fractional part is discarded. 

i a ! operation 
1 10 45%10 = 5; 5 / (10/10) = 5; digit = 5: 
2 100 45%100 = 45: 45 / (100/10) = 4; digit = 4: 
3 1000 45%1000 = 45: 45 / (1000/10) = 0: digit = 0; 
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Answers 

1. (a) (i) 1 (ii) 255 (iii) 221 (iv) 1.5 (v) 0.25 (vi) 2.09375 (b) (i) 100 
(ii) 10000000 (iii) 1011101 (iv) 10.1 (v) 1.11 (vi) 1000.00110011 (approximately) 

2. (a) (i) 4 (ii) 1.5 (iii) 5.07 x 1019 (iv) 0 

(b) (i) 1 0 1 01111111 1 00000000000000000000000 ! 

(ii) ,1 1 10000001 1 10000000000000000000000 I 

(iii) 1 0 1 011111 00 I 11000000000000000000000 . 

(iv) 1 0 110010101 111101000010010000000000 I 

3. Largest is 2128 = 3.40 X 1038 . Smallest is 2-126 = 1.18 X 10-38 . 

4. f5 = 1.21875; f6 = 8000000; d5 = 1.21875; d6 = 8000000.21875 

8. (a) 0(1) (b) O(n) (c) O(n2 ) (d) O(n3 ) (e) 0(10n) 

9. (b) 99999 (c) Change i loop to: for (i = 2; i < sqrt(n); H+). Speedup is 316. 

11. (a) Exchange sort. (b) QuickSort. 

12. (a) Binary search, execution time depends only logarithmically on the precision. 

13. (b) Complexity O(n), memory ~ lOn extra int's. 

Gabor Csanyi 
March 2013 
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