Part IA Paper 4: Mathematical Methods
 EXAMPLES PAPER 10
 Partial Differentiation

(Elémentary exercises are marked \dagger, problems of Tripos standard *)

Partial Derivatives, Chain Rule, Perfect Differentials

$\dagger 1$. Evaluate $\frac{\partial f}{\partial x} ; \frac{\partial f}{\partial y} ; \frac{\partial^{2} f}{\partial x^{2}} ; \frac{\partial^{2} f}{\partial y^{2}} ; \frac{\partial^{2} f}{\partial x \partial y} ; \frac{\partial^{2} f}{\partial y \partial x}$ for the functions: (i) $x^{2} y^{5}$; (ii) $x \sin y$.
2. Figure 1 shows values of a continuous function $z=f(x, y)$ at points in the vicinity of the point $x=2, y=5$. Deduce approximate values for $\frac{\partial^{2} f}{\partial x^{2}} ; \frac{\partial^{2} f}{\partial y^{2}} ; \frac{\partial^{2} f}{\partial x \partial y}$; and $\frac{\partial^{2} f}{\partial y \partial x}$ at the point $x=2, y=5$.
Show that this type of approximation always gives the same value for $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$.

Figure 1: Values of z in the vicinity of $x=2, y=5$.
3. For what value of n is $\theta=t^{n} \exp \left(\frac{-r^{2}}{4 t}\right)$ a solution of the equation $\frac{\partial}{\partial r}\left[r^{2} \frac{\partial \theta}{\partial r}\right]=r^{2} \frac{\partial \theta}{\partial t}$?
4. Given that $w=x y z$, where $x=\cos \theta \sin \phi, y=\sin \theta \sin \phi$ and $z=\cos \phi$, evaluate $\left(\frac{\partial w}{\partial \theta}\right)_{\phi}$
(a) by substitution before differentiation;
(b) from the chain rule $\left(\frac{\partial w}{\partial \theta}\right)_{\phi}=\left(\frac{\partial w}{\partial x}\right)_{y, z}\left(\frac{\partial x}{\partial \theta}\right)_{\phi}+\left(\frac{\partial w}{\partial y}\right)_{z, x}\left(\frac{\partial y}{\partial \theta}\right)_{\phi}+\left(\frac{\partial w}{\partial z}\right)_{x, y}\left(\frac{\partial z}{\partial \theta}\right)_{\phi}$.
5. Explain the term perfect differential.

Given that $d h=T d s+v d p$ is a perfect differential, show by considering $\frac{\partial^{2} h}{\partial s \partial p}$ that

$$
\left(\frac{\partial T}{\partial p}\right)_{s}=\left(\frac{\partial v}{\partial s}\right)_{p}
$$

Define $g=h-T s$ and derive in the same way the relation

$$
\left(\frac{\partial v}{\partial T}\right)_{p}=-\left(\frac{\partial s}{\partial p}\right)_{T} .
$$

Gradients, Normals, Maxima and Minima

6. The temperature in a given region of the $x-y$ plane is determined by $T(x, y)=$ $2 x^{2}-3 x y$. Find
(a) the temperature gradient at $(1,1)$ at 30° to the x-axis;
(b) the temperature gradient at $(1,1)$ along the curve $y=x^{3}$ in the direction of increasing x;
(c) the value and direction of the largest temperature gradient at $(1,1)$.
$\dagger 7$. Find the gradient of the function $w=2 x z^{2}-3 x y-4 x$. Determine the equation of the tangent plane to a level surface which passes through the point $(1,-1,2)$.
7. Draw a rudimentary contour map of the function $z=x y(2-x-2 y)$. (Hint: first draw lines for $z=0$ and then think about the values of z in the regions between these contours.) Check your answer by plotting the contour map in Matlab/Octave. (See hint below.)
Find the stationary points of the function. Determine from the sketch which are maxima, minima or saddle points. Check your answer by applying the test on p. 5 of the maths data book.
9.* A surface is defined in terms of two parameters u and v by the vector relation $\mathbf{r}=\mathbf{F}(u, v)$, where \mathbf{r} is the position vector of a point on the surface with respect to a fixed origin 0 .
Explain carefully why the vectors $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ are tangential to the surface.
If $\mathbf{r}=\left(u^{2}+v\right) \mathbf{i}+2 u v \mathbf{j}+\left(u+v^{2}\right) \mathbf{k}$, find $\frac{\partial \mathbf{r}}{\partial u}$ and $\frac{\partial \mathbf{r}}{\partial v}$ at the point $u=-1, v=-1$. Deduce the unit surface normal vector \mathbf{n} at this point, and show that the surface lines $u=$ constant and $v=$ constant intersect orthogonally at this point.

Answers

1. (i) $2 x y^{5}, 5 x^{2} y^{4}, 2 y^{5}, 20 x^{2} y^{3}, 10 x y^{4}, 10 x y^{4}$.
(ii) $\sin y, x \cos y, 0,-x \sin y, \cos y, \cos y$.
2. $120,4,10,10$.
3. $n=-1.5$.
4. $\cos 2 \theta \sin ^{2} \phi \cos \phi$.
5. (a) $(\sqrt{3}-3) / 2$; (b) $-8 / \sqrt{10}$; (c) $\sqrt{10}$ in direction $(\mathbf{i}-3 \mathrm{j}) / \sqrt{10}$.
6. $\nabla w=\left(2 z^{2}-3 y-4\right) \mathbf{i}-3 x \mathbf{j}+4 x z \mathbf{k}$. Tangent plane: $7 x-3 y+8 z=26$.
7. saddle points at $(0,0),(2,0),(0,1)$; maximum at $\left(\frac{2}{3}, \frac{1}{3}\right)$.
8. $\mathbf{n}=\frac{2}{3} \mathbf{i}-\frac{1}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}$.

Hint for Matlab component of Question 8. Matlab/Octave offers several options for plotting surfaces. First, we need to sample z on a two-dimensional grid, just like the grid in Figure 1. Suppose we are interested in x values in the range -2 to 4 , and we want to sample z at intervals of 0.1 . We set up a suitable vector of x values using $x=[-2: 0.1: 4]$, and likewise a vector of y values using $y=[-2: 0.1: 4]$. Next, we stretch these values over the two-dimensional grid using $[\mathrm{X}, \mathrm{Y}]=\operatorname{meshgrid}(\mathrm{x}, \mathrm{y})$. This produces matrices X and Y containing the x and y coordinates of every point on the grid (type "help meshgrid" into a Matlab/Octave window). Finally, we produce the grid of z values using $\mathrm{Z}=\mathrm{X}$. * Y .* (2 $\left.-\mathrm{X}-2^{*} \mathrm{Y}\right)$. Note the element-by-element multiplication indicated by .* - we do not want matrix multiplication here. We can now produce a contour plot of Z using contour(x, y, $\mathrm{Z})$. Not enough contours? contour($\mathrm{x}, \mathrm{y}, \mathrm{Z},-5: 0.1: 5$) will show all contours in the range -5 to 5 , at intervals of 0.1 . The colorbar command adds a suitable legend. You could also experiment with different types of plot: for example, $\operatorname{try} \operatorname{mesh}(Z)$ and surface (Z).

Suitable past Tripos questions: Q10 on any Maths IA Tripos 1993-2000, Q9 2001-4, Q7 2005-6, Q10 2007-8, Q6 2009, Q7 2010, Q10 2011.

