Accuracy and Errorsin Experimental Engineering’

[These notes summarise some basic statisticas.iddayou have not done A-level statistics you
will probably need to do some background readirgge, for example C. Chatfiel8tatistics for
TechnologyChapman and Hall, 1978]

Any experiment which produces numerical resultsukhalways be accompanied by an
estimate of the accuracy of those results. If ékperiment is repeated by someone else using
similar specimens and apparatus, what sort of aggeeis likely between the two sets of results?
Variation in experimental results comes from selvevarces.

1. Genuine variation in the quantities being deteeah, due to the unavoidable variation in
the physical properties of real materials.

2. Instrumental inaccuracies. These may be sysierfdue to a faulty zero or scale
constant) or random (due to friction or “noise”).

3. Estimates made when fractional parts of scalisidns are read.

4. Numerical rounding-off during calculations.

In a well-designed experiment the “experimentab@rfdue to sources 2, 3 and 4) should be
small relative to any genuine variation (source The various measurements made during the
experiment should have roughly the same degreeaifracy. This implies that you should know
the accuracy of each of the instruments you use.

As far as possible each instrument in the Departsiéaboratories is checked regularly to
make sure that it conforms to the limits of accyraet for it. These limits will usually be found
marked on the instrument itself and are set owianous British Standards which may be referred
to either in the laboratory or the Library. Refeze to a British Standard will only indicate the
maximumerror that an instrument may have. If more detbknowledge of the performance of a
particular instrument is required it must be catbdagainst a high-accuracy standard. Individual
values read from the scale of the instrument magn tbe adjusted in accordance with the
calibration.

1. The “external” or “a priori” estimation of experental error

An “external” or “a priori” estimate of the postberror in an experiment is an estimate we
make (or could make) beforge actually do the experiment. It is construdbgdestimating the
magnitudes of the individual errors associated wihirces 2 to 4 in the list given above, and
carrying these errors through the numerical prongssf the experimental data to give the
corresponding error in the result.

" The term “error” used in these notes refers wittirinsic inaccuracy of any experimental procedutt is not the
same as a “mistake”. Mistakes may happen whenstrument is read (by using the “wrong” voltagelsceeading a
micrometer as 10.53 mm instead of 9.53 mm, etcgmndvalue is transcribed from a laboratory notklioa report or
during a calculation. The only way to guard agamsstakes is to check each phase of the work as ss it is
completed. Once you have left the laboratory ve@nechanged the setting of your apparatus, it nesipb late.



An error in some quantitx can be expressed as an absokt®r £ or as a_relativgor
proportional) error, wherer = £/x. Numerical processing involves:

(a)  Addition and subtraction: if two quantitieggandx, may be in error by as much ass;tand
+ & then the absoluterror in either the sum difference ofx; andx, may be as much as
* (+ &). Note that subtracting two nearly equal quantitias produce a large value for
the relativeerror, H &+ &)/(x —Xo), in the result.

(b)  Multiplication and division: if two quantities, andx, may be in error by as much g,
androx, then the relativerror in the product aquotient of x; and x, may be as much as
*(rq +rp), providedr, andr, are small.

Note that absolute errors must be used when dealihgsums and differences: relative errors must
be used when dealing with products and quotients.
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The above ideas are usually adequate. Howevenayt be argued that ¥; and x, are
independent it is unlikely that the largest eriarboth quantities will occur simultaneously. layn
be shown that if the probable absolute errorg;imndx, are & and+ & respectively then the
probable absolute error in the sum or differencexjoind x, is +./& + &2 . Similarly, if the
probable relative errors ixy andx, are #1 and+r, then the probable relative error in the product
or quotient ofk; andx, is ++/r” +r . (A precise definition of probable error is givierSection 3.)

2. The “internal” or “a posteriori” estimation okgerimental error

An “internal” or “a posteriori” estimate of the @agacy of an experiment is obtained by
carrying out the experiment a number of times taioba_sample@nd examining the “spread” of the
sample. If we measure a quantitp total ofn times we obtain a set afvaluesx; which forms a
distribution This distribution includes both the genuine &aon inx and the experimental error.
We can present the information graphically as &biam (see Fig. 1), dividing the range of the
valuesx; into a series of equal intervalsx and drawing a series of rectangles of widthand
height equal to the number (or proportion) of vallyeng in that interval. The meanf the sample
x is defined asX = Zx;/n. The_variance?, which gives us a measure of the spread of thelgais
defined ass? = 2(x — X)2/n. The quantitys is known as the standard deviatiohthe sample
distribution. Systematic errors in the experimaet likely to shift the value ok without affecting
the value of.




The quantitx which the experiment is designed to measure &t have a distribution. This
can be displayed as a continuous cug® in which the area under the curve between two
ordinatesx; andx, represents the probability of a single experimergallt lying betweem; and

+00

Xo (see Fig. 2). The total area under the cuf\qaﬁ,x)dx, is equal to unity. The mean of the
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distribution is = jxqo( ¥dx and the variance ig? = I(x—u)qu(x) dx.
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The purpose of an experiment is normally to esentlaé values gt ando from the experimental
values ofx ands. If we have grounds for believing that the expemtal errors are “small” then
the best estimate g is equal toX and the best estimate @f is given by the expression

J/(n-1) s.

The value ofx determined from the@ experiments also has a distribution, which hasmpea
and standard deviatiow/r/n. This reduction in the standard deviation is athmmatical
expression of our intuitive belief that the mezf a set of experimental values is likely to be a
better estimate of the true valuepothan the value; obtained from a single experiment.

3. Statements about errors: the normal distribution

If no information is available about the shapeaddistribution it is usually assumed to be
normal The shape of the normal distribution is giveifrig. 3.
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If a variablex has a normal distribution with megrand standard deviatiam then:
50% of the measurementsyotvill lie within the rangeu + 0.670
68% of the measurementsyoivill lie within the rangeu + o
95% of the measurementsyoivill lie within the rangeu + 20
99.73% of the measurementsxakill lie within the rangeu + 30

The above percentages are often expressed as emcd#idimits For example, ifx; is an
experimental value of a varialewith unknown meam and known standard deviati@an we can
say “with 95% confidence” thay; lies in the range; — 20 to x; + 20. The quantity 0.6 is
sometimes referred to as the probable ersme section 1.

If the sample sizan is small in your experiment then the sample vagais not normally
distributed but instead is distributed accordingStadent’s-t distribution (see text books and the
Mathematics Data Book for details of this distriba). It follows that the confidence intervalstjus
guoted are too optimistic and we actually haveaatber spread. Thus + one standard deviation will
not cover as much as 68% of the measurements.

A useful approximation in the laboratory is to stimate the variance? ass?n/(n — 3) and
then use the normal distribution probabilities.sTworks well down to a sample 0= 5.

4. Plotting graphs
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In many experiments you will be asked to find thkationship of some quantigyto another
quantityx. Plotting your results as precise points in the/X plane leads to the problem of finding
the “best” straight line (or higher-order polynofitit to the points. The method of least squares
described in the mathematics course, provideswigolto this problem. However it is better to
include external estimates of the experimentalrerab the plotting stage by plotting your resulis a
rectangles, as shown in Fig. 4. (In this figureis the standard deviation of the estimated
distribution of experimental error.) If you canadr a straight line through at least 2/3 of the
rectangles then your experiment is consistent thighhypothesis thatis a linear function ox.

Some programmable calculators have a built-in neufor finding the best straight-line fit
to a set of points. However, the hypothesis tha¢ wariable in your experiment is linearly
dependent on another is something that should cioome engineering science, not from the
experiment itself. Plot the points first, to sédhie relationship is a linear one. Thase your
calculator, if you want to, to find the numericalwes of the parameters of the line.
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5. Simple examples showing estimation of errors

(&) The constant acceleratiamf a slowly moving object is to be found by deterimg the
timet taken to traverse a measured distacéhe equation of motion that applies is:

S= 1at2 . Rearranginga = 25 .
2 t2

The time is measured with a stopwatch, the distamith a metre ruler. The measured
values and their errors are:-

s=2+0.005m. This is 0.25 %.
t=4.2+0.2s. This is 4.8 %.

What is the acceleration and its estimated error?

The relative errors im and t> may be added to give the relative erromin The relative
error int? is twice the relative error in

Hence relative error iais: 025%+ 2x 4.8% = 9.8 %.

The size of the relative error in the time measumet, plus the factor of 2, causes that term
to dominate. The Y4 per cent error due to the distaneasurement is clearly negligible compared
to the 9.6% error due to the time measurementeoesult (the acceleration) would most sensibly
be written:

a=023+0.02m%&

(b) An inductor is formed by windinly; turns of wire in the form of a cylindrical coil of
lengthl and diameted;. A second circular coil witlN, turns and of smaller diametey is placed
coaxially within the first, at its centre. The mat inductance between the two windings is to be
determined from measurements on the two coilsgus$ie formula:-

M :%—N]-dezz H
4 JdZ+12

The numbers of turns were counted and are exlaehgths were measured with a metre
rule; the measured values and their errors (pexgestquoted in parentheses) are:-

N; = 200 turns (exact) d; =20+ 0.5mm (2.5 %)
N, = 20 turns (exact) d2=10+0.5mm (5 %)
Ho = 4rtx 107 H m™* | =50+0.5mm (1 %)

The relative error in the numerator duedé is: 2x5 =10%. Relative errors id12
and|?are 5% and 2% respectively, so the absolute vai[ﬁesdlzz 400 + 20 mrf andl?= 2500
+ 50 mnf, and the value of the term inside the squareisoo2900 + 70 mrh

The relative error in the denominator isx¥80/2900, or 1.2%, and the overall relative error
iIs10 + 1.2 =11.2 %. It can be seen that thet s@sous error here arises from poor accuracy in
measurement ak. The result might therefore be written:

M=7.3+0.8x10°H
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