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Accuracy and Errors in Experimental Engineering*  

 [These notes summarise some basic statistical ideas.  If you have not done A-level statistics you 
will probably need to do some background reading – see, for example C. Chatfield, Statistics for 
Technology, Chapman and Hall, 1978] 
 

Any experiment which produces numerical results should always be accompanied by an 
estimate of the accuracy of those results.  If the experiment is repeated by someone else using 
similar specimens and apparatus, what sort of agreement is likely between the two sets of results?  
Variation in experimental results comes from several sources. 

1. Genuine variation in the quantities being determined, due to the unavoidable variation in 
the physical properties of real materials. 

2. Instrumental inaccuracies.  These may be systematic (due to a faulty zero or scale 
constant) or random (due to friction or “noise”). 

3. Estimates made when fractional parts of scale divisions are read. 

4. Numerical rounding-off during calculations. 

In a well-designed experiment the “experimental error” (due to sources 2, 3 and 4) should be 
small relative to any genuine variation (source 1).  The various measurements made during the 
experiment should have roughly the same degree of accuracy.  This implies that you should know 
the accuracy of each of the instruments you use.    

 As far as possible each instrument in the Department’s laboratories is checked regularly to 
make sure that it conforms to the limits of accuracy set for it.  These limits will usually be found 
marked on the instrument itself and are set out in various British Standards which may be referred 
to either in the laboratory or the Library.  Reference to a British Standard will only indicate the 
maximum error that an instrument may have.  If more detailed knowledge of the performance of a 
particular instrument is required it must be calibrated against a high-accuracy standard.  Individual 
values read from the scale of the instrument may then be adjusted in accordance with the 
calibration. 

1. The “external” or “a priori” estimation of experimental error 

 An “external” or “a priori” estimate of the possible error in an experiment is an estimate we 
make (or could make) before we actually do the experiment.  It is constructed by estimating the 
magnitudes of the individual errors associated with sources 2 to 4 in the list given above, and 
carrying these errors through the numerical processing of the experimental data to give the 
corresponding error in the result. 
 

                                                 
*  The term “error” used in these notes refers to the intrinsic inaccuracy of any experimental procedure.  It is not the 
same as a “mistake”.  Mistakes may happen when an instrument is read (by using the “wrong” voltage scale, reading a 
micrometer as 10.53 mm instead of 9.53 mm, etc.) when a value is transcribed from a laboratory notebook to a report or 
during a calculation.  The only way to guard against mistakes is to check each phase of the work as soon as it is 
completed.  Once you have left the laboratory, or even changed the setting of your apparatus, it may be too late. 
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An error in some quantity x can be expressed as an absolute error ε or as a relative (or 
proportional) error r, where r = ε /x.  Numerical processing involves: 

(a) Addition and subtraction: if two quantities x1 and x2 may be in error by as much as  ± ε1 and  
± ε2  then the absolute error in either the sum or difference of x1 and x2 may be as much as 
± (ε1+ ε2).  Note that subtracting two nearly equal quantities can produce a large value for 
the relative error, ± (ε1+ ε2)/(x1 – x2), in the result. 

 (b) Multiplication and division: if two quantities x1 and x2 may be in error by as much as r1x1 
and r2x2  then the relative error in the product or quotient of  x1  and  x2  may be as much as  
± (r1 + r2), provided r1 and r2 are small. 

Note that absolute errors must be used when dealing with sums and differences: relative errors must 
be used when dealing with products and quotients.  

 

 

 

 

 

 
Fig. 1 

 The above ideas are usually adequate.  However, it may be argued that if x1 and x2 are 
independent it is unlikely that the largest errors in both quantities will occur simultaneously.  It may 
be shown that if the probable absolute errors in x1 and x2 are ± ε1 and ± ε2 respectively then the 
probable absolute error in the sum or difference of x1 and x2 is 2

2
2
1 εε +± . Similarly, if the 

probable relative errors in x1 and x2 are ± r1 and ± r2 then the probable relative error in the product 
or quotient of x1 and x2 is 2

2
2

1 rr +± . (A precise definition of probable error is given in Section 3.) 

 

2. The “internal” or “a posteriori” estimation of experimental error 

 An “internal” or “a posteriori” estimate of the accuracy of an experiment is obtained by 
carrying out the experiment a number of times to obtain a sample and examining the “spread” of the 
sample.  If we measure a quantity x a total of n times we obtain a set of n values xi which forms a 
distribution.  This distribution includes both the genuine variation in x and the experimental error.  
We can present the information graphically as a histogram (see Fig. 1), dividing the range of the 
values xi into a series of equal intervals ∆x and drawing a series of rectangles of width ∆x and 
height equal to the number (or proportion) of values lying in that interval.  The mean of the sample 
x is defined as  x = Σxi/n.  The variance s2, which gives us a measure of the spread of the sample, is 
defined as s2 = Σ(x – x )2/n. The quantity s is known as the standard deviation of the sample 
distribution.  Systematic errors in the experiment are likely to shift the value of x  without affecting 
the value of s. 
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       The quantity x which the experiment is designed to measure will also have a distribution.  This 
can be displayed as a continuous curve φ(x) in which the area under the curve between two 
ordinates x1 and x2 represents the probability of a single experimental result lying between x1 and  

x2 (see Fig. 2).  The total area under the curve,∫
+∞

∞−

dxx)(φ , is equal to unity.  The mean of the 

distribution is ∫
+∞

∞−

= dxxx )(φµ  and the variance is ( )∫
+∞

∞−

−= dxxx φµσ 22 )( . 
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Fig. 2 

The purpose of an experiment is normally to estimate the values of µ and σ  from the experimental 
values of x  and s.  If we have grounds for believing that the experimental errors are “small” then 
the best estimate of µ is equal to x  and the best estimate of σ is given by the expression 

( ){ } snn 1− . 
 

The value of x determined from the n experiments also has a distribution, which has mean µ 
and standard deviation σ / n.  This reduction in the standard deviation is a mathematical 
expression of our intuitive belief that the mean x of a set of experimental values is likely to be a 
better estimate of the true value of µ than the value x1 obtained from a single experiment. 
 

3. Statements about errors: the normal distribution 

 If no information is available about the shape of a distribution it is usually assumed to be 
normal.  The shape of the normal distribution is given in Fig. 3.  

Fig. 3 
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If a variable x has a normal distribution with mean µ and standard deviation σ  then: 

50% of the measurements of x will lie within the range µ  ± 0.67σ  
68% of the measurements of x will lie within the range µ  ± σ  
95% of the measurements of x will lie within the range µ  ± 2σ  
99.73% of the measurements of x will lie within the range µ  ± 3σ  

The above percentages are often expressed as confidence limits.  For example, if x1 is an 
experimental value of a variable x with unknown mean µ and known standard deviation σ  we can 
say “with 95% confidence” that x1 lies in the range x1 – 2σ  to x1 + 2σ .  The quantity 0.67σ  is 
sometimes referred to as the probable error - see section 1. 

If the sample size n is small in your experiment then the sample variance is not normally 
distributed but instead is distributed according to Student’s-t distribution (see text books and the 
Mathematics Data Book for details of this distribution).  It follows that the confidence intervals just 
quoted are too optimistic and we actually have a broader spread. Thus ± one standard deviation will 
not cover as much as 68% of the measurements. 

A useful approximation in the laboratory is to re-estimate the variance σ 2 as s2n/(n – 3) and 
then use the normal distribution probabilities. This works well down to a sample of n = 5. 
 

4.     Plotting graphs 

Fig. 4 

 In many experiments you will be asked to find the relationship of some quantity y to another 
quantity x.  Plotting your results as precise points in the (x, y) plane leads to the problem of finding 
the “best” straight line (or higher-order polynomial) fit to the points.  The method of least squares, 
described in the mathematics course, provides a solution to this problem.  However it is better to 
include external estimates of the experimental errors at the plotting stage by plotting your results as 
rectangles, as shown in Fig. 4.  (In this figure σ is the standard deviation of the estimated 
distribution of experimental error.)  If you can draw a straight line through at least 2/3 of the 
rectangles then your experiment is consistent with the hypothesis that y is a linear function of x. 

Some programmable calculators have a built-in routine for finding the best straight-line fit 
to a set of points.  However, the hypothesis that one variable in your experiment is linearly 
dependent on another is something that should come from engineering science, not from the 
experiment itself.  Plot the points first, to see if the relationship is a linear one.  Then use your 
calculator, if you want to, to find the numerical values of the parameters of the line. 
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5.    Simple examples showing estimation of errors 

 (a)  The constant acceleration a of a slowly moving object is to be found by determining the 
time t taken to traverse a measured distance s.  The equation of motion that applies is:  

2

2

1
ats = .    Rearranging, 

2

2

t

s
a = . 

 The time is measured with a stopwatch, the distance with a metre ruler.  The measured 
values and their errors are:- 
 

    s = 2 ± 0.005 m.   This is 0.25 %. 
    t = 4.2 ± 0.2 s.    This is 4.8 %. 
 

 What is the acceleration and its estimated error?  
 

 The relative errors in a and 2t  may be added to give the relative error in a.  The relative 
error in 2t  is twice the relative error in t.   
 

 Hence relative error in a is: %.%. 842250 ×+  = 9.8 %.   
 

 The size of the relative error in the time measurement, plus the factor of 2, causes that term 
to dominate. The ¼ per cent error due to the distance measurement is clearly negligible compared 
to the 9.6% error due to the time measurement, so the result (the acceleration) would most sensibly 
be written:  
 

a = 0.23 ± 0.02 m s-2. 
 
 (b)  An inductor is formed by winding N1 turns of wire in the form of a cylindrical coil of 
length l and diameter d1.  A second circular coil with N2 turns and of smaller diameter d2 is placed 
coaxially within the first, at its centre.  The mutual inductance between the two windings is to be 
determined from measurements on the two coils, using the formula:- 
 

22
1

2
2210

4 ld

dNN
M

+
= πµ

 H 

 

 The numbers of turns were counted and are exact.  Lengths were measured with a metre 
rule; the measured values and their errors (percentages quoted in parentheses) are:- 
 

  N1 = 200 turns (exact)    d1 = 20 ± 0.5 mm  (2.5 %) 
  N2 =  20  turns (exact)   d2 = 10 ± 0.5 mm  (5 %) 
  µ0 = 4π × 10-7 H m-1   l   = 50 ± 0.5 mm  (1 %)  
 

 The relative error in the numerator due to 2
2d  is:  2 × 5 = 10%.   Relative errors in 21d      

and 2l are 5% and 2% respectively,  so the absolute values are:  2
1d = 400 ± 20 mm2  and 2l = 2500 

± 50 mm2, and the value of the term inside the square root is:  2900 ± 70 mm2.    
 

 The relative error in the denominator is: ½ × 70/2900, or 1.2%, and the overall relative error 
is 10 + 1.2 = 11.2 %.   It can be seen that the most serious error here arises from poor accuracy in 
measurement of d2.  The result might therefore be written: 
 

M = 7.3 ± 0.8 × 10-6 H 
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