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Example Sheet 6/1 : LINEAR SYSTEMS AND CONTROL 

Questions marked with a t are very straightforward. Those marked with a * are roughly 
of Tripos standard, but not necessarily of Tripos length. 

Qualitative description of feedback systems 

1. 	 Describe the operation of the following feedback control systems. In each case draw a 
block diagram which shows both the system that is being controlled and the feedback 
mechanism. (Make reasonable assumptions throughout. No maths is required. Label 
each block with the process or device it represents, and each line with the nature of 
the 'signal' it carries between blocks - ie is it a force, velocity, temperature, etc? 
Block diagrams should be useful but not too complicated - say 3 to 10 blocks.) 

(a) 	 A thermostatically-controlled domestic heating system (eg gas-fired). 

(b) 	The 'fan-tail' mechanism shown in fig.1, used to point windmills into the wind. 
(British patent by Edmund Lee, 1745.) 

(c) A self-steering system for a ship. 

(d) Congestion control on the Internet (TCP). 

2. 	 (a) What is meant by a linear system? Which of the following equations represent 
linear systems? In each case the input is u and the output is x. Justify your 
answers. 

dx 2i) x = 3u, ii) 3 dt + x = u 

d2x dx du dx


iii) 2 dt2 + 3 dt + x = u + dt iv) 3x dt + x u 


(b) For each of the feedback systems in Question 1, consider which elements could 
reasonably be modelled, at least approximately, using linear differential equa­
tions. 

3. 	 Having designed a control strategy to safely land the Mars Lander, you have been 
asked to design an altitude control system. This is the first of a series of exercises to 
that end: 

Consider the non-linear equation of motion of the craft (with mass m) for vertical 
motion assuming it remains pointing upwards (attitude stabiliser on): 

(1) 


where R is the distance from the centre of Mars to the lander, Fgravity(R) -GMmlR2 
is the force due to gravity, Fdrag = -4PCdAR3/\111 and FthruBt is the upwards thrust 
force. 
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(a) 	Find the value of Fthrust required to maintain equilibrium at a radius R Ro. 

(b) 	Let R = Ro + rand Fthrust Feq + fthrust, where Ro is constant and Feq is 
the corresponding equilibrium thrust found in part (a). Hence, show that the 
linearised equation of motion of the lander about the equilibrium is: 

.. 	 2GMm f 
mr = R3 r + thrust 

(you will need to use a Taylor series expansion, or apply the binomial theorem, 
to the Fgravity term and then neglect higher order terms). 

(c) 	 If the dynamics of the lander can be described by P(s) (relating its output, 
change in altitude, to its input, change in thrust), and the engine dynamics 
by H(s) (relating its output, change in thrust, to its input, throttle position), 
draw the block diagram for an altitude control system incorporating a controller 
K(s) (whose input is altitude error and output is throttle position). 

(d) Use the linearised equation of motion from part (b) to find P(s). 

(e) 	 Test: Initialise the lander at an altitude of 500 m with the equilibrium thrust Feq 

(see 'Simulation Notes' below). Theoretically the lander should simply hover, 
but what happens in the simulation? Why? Why is this hovering strategy not 
practical in reality? 

Laplace transforms 

4. 	 Find the Laplace transforms of the following functions given that these functions are 
zero for t < O. 

(a) 	 f(t) e-at cos(fJt + ¢) where 0, fJ are real and positive and ¢ is real, 

(b) 	 f(t) = t2 + 1. 

Plot the pole positions in the complex plane for each case. 

5. 	 Find the inverse transform of: 

(a) 
6 

(s+1)(s+2)(s+3)' 

2 
(b) (s + 1)(s2 + 22) , 

3 
(c) (s + l)(s + 2)2 . 
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Convolution integral 

6. 	 The path connecting a sender to a receiver in a telephone network can be modelled 
very approximately as a linear system with impulse response j3e-{3t (t > 0). If the 
signal at the sending end of the network is e-at (t > 0), find the received signal by 
using the convolution theorem. 

Repeat the calculation using Laplace transforms and the transfer function of the 
network. 

Transfer functions and block diagrams 

7. 	 t Find the transfer functions relating the output voltage, Vo , to the input voltage, 
Vi, for the operational amplifier circuits shown in fig.2. (Assume the amplifiers to be 
ideal.) 

8. 	 t Find the transfer functions relating y to x for each of the block diagrams shown in 
fig.3. (Note that fig.3(a) shows a positive feedback loop.) 

Impulse and step responses 

9. 	 t What is the impulse response of (a) an integrator (compare this with your answer 
to question 7(a)), (b) a system with transfer function 3S/(S2 + 4) ? 

10. 	* Find the unit step response of a system with transfer function 

1 + as 
(1+8)(1+28)' 

Sketch the response for the cases (i) a > 2, (ii) 2 > a > 0, and (iii) a < 0, paying 
attention to the possibility of maximum and minimum values, and to the initial slope 
of the response. 

11. * Calculate the impulse response for 

d2 y dy 
- + 20: - + (02 + 0:2)y = X 
dt2 dt 

for the following parameters 

(a) 0: > 0; 0 2 > 0 

(b) 0 2 ~A2 < 0; 0: ~ A < 0 

(c) 0: > 0; 0 2 = 0 

(d) a < 0; 0 2 > O. 

Sketch the impulse responses in each case, including scales on both axes. 

Suitable questions on past Tripos papers: 

2005, Q4(a)&(b); 2006, Q3 (b)&(c); 2007, Q2 (a); 2008, Q3 (a); 2009 Ql (b); 2010 
Q1. 
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Simulation Notes for Question 3 

First make sure you have downloaded the latest version of the Mars Lander source code 
from CamTools. Version 1.2 (or later) includes features needed for some of the later 
exercises. 

Within lander.cpp create three new scenarios: copy the code from default scenario 1 and 
change the starting altitude to (a) 500m, (b) 51Om, and (c) 700m. For each scenario, set 
delta_t to 0.01 seconds (to limit the effect of numerical issues when testing stability), the 
initial velocity to zero and autopilot_enabled to true. 

Within the autopilot function, you will need to add relevant variables to the variable 
declaration lines as you work. You should already have variables that keep up-to-date 
estimates of speed and altitude. Add a variable for target_altitude and set it to 500m. 

Set throttle equal to Feq/MAX_THRUST and run the scenario that begins at the target 
altitude of 500m (you may already have a variable delta from the your landing control 
strategy that calculates the equilibrium throttle). Note that MAX-THRUST = 1.5 x ~.f1m 

mars 

Within lander.h, set FUEL...RATLAT-.MAX_THRUST to zero, to effectively give yourself an infi­
nite fuel supply. Make sure the total lander mass is the default value of 200 kg by checking 
the unloaded mass, fuel capacity and fuel density. 

Parameter Value 
Mars radius 3.386x106 

x 1023Mars mass 6.42 
Gravity 6.673 X 10-11 

Lander mass 200 

Table 1: Summary of parameters. 
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Answers: 

1. 

2. 	 ­

1 
3. 	 Feq = 747.1 N, pes) = ms2 _ 2GMm/Rg 

4. ( a) 1(s) = (s + a) cos <p - /3 sin <p 
(s+a)2+/32 

(b) 1 ( s) = s2 + 2 

5. (a) 3e-t - 6e-2t + 3e-3t 

(b) ~ {2e-t 
- 2 cos 2t + sin 2t} 

(c) 3 {e-t - te-2t - e-2t } 

6. 	 /3(e-at - e-fJt )/(/3 - a) if /3 =I a 

/3te- fJt if /3 = a. 


-1 	 R2(1 + sC1R 1)
7. 	 (a): sCR' (b): -sCR, (c): 

R I (l + sC2 R2 ) 

8 (). 93(S)91(S) (b)' 92(S) 

. a. 1-91(S)92(S) . 1 + 92(S)91 (s)[l + 93(S)] 


9. 	 (a): H(t), (b): 3cos(2t). 

10. 1 + (1 a)e-t + (a - 2)e-t / 2 for t > O. 

11. (a) be-msinOt 

(b) 2~ {e-(a-A)t_e-(a+A)t} 

(c) te-at 

(d) bel<*sinOt 

J. Gongalves 
Michaelmas 2012 
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