Part IA Paper 4: Mathematics

Examples paper 2

(Elementary exercises are marked \dagger, problems of Tripos standard *)

Revision question

For each of the following functions $f(x)$, calculate $f^{\prime}(x)$:
(a) $f(x)=\sin ^{2}\left(x^{2} / 2\right)$
(b) $f(x)=\sin \left(\sin ^{2} x\right)+\sin \left(\cos ^{2} x\right)$
(c) $f(x)=\exp \left(\exp \left(\exp \left(x^{2}\right)\right)\right)$
(d) $f(x)=\ln \left\{\frac{\sin ^{2} x}{x^{2}}\right\}$.

Determinants

$1 \dagger \quad$ Evaluate the determinants of the following matrices

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & -3 \\
3 & 0 & -4 \\
-1 & 3 & 2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & -3 \\
2 & 0 & 1
\end{array}\right]
$$

Verify that $\operatorname{det} \mathbf{A B}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$.
2 Without solving the following simultaneous equations, determine the value of s for which they have no solution when $t=1$.

$$
\begin{aligned}
2 x+y+3 z & =5 \\
6 x-2 y-z & =3 \\
s x+z & =t
\end{aligned}
$$

For this value of s determine the value of t for which the equations have an infinite number of solutions. Use Matlab/Octave to visualize the three planes for these and other values of s and t. Make sure you understand how the planes' intersections relate to the values of s and t.

3 Prove that, for any vectors \mathbf{a}, \mathbf{b} and \mathbf{c} and scalar λ

$$
\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=(\mathbf{a}+\lambda \mathbf{b}) \cdot \mathbf{b} \times \mathbf{c}
$$

Interpret this as a rule for manipulating the rows (or columns) of 3×3 determinants.
Hence evaluate

$$
\left|\begin{array}{lll}
2 & 2 & 3 \\
1 & 2 & 3 \\
4 & 0 & 6
\end{array}\right| \quad(\text { in your head! })
$$

Functions and Series

4. Sketch graphs of the following functions:
(a) $\left(x^{2}-1\right) \mathrm{e}^{-x}$
(b) $x-\sin x$
(c) $3 x^{4}-16 x^{3}+18 x^{2}$

For what values of k does the equation $3 x^{4}-16 x^{3}+18 x^{2}=k$ have
(i) precisely two distinct real roots;
(ii) precisely three distinct real roots?
$5 \dagger$ (i) Prove that

$$
\sinh (A+B)=\sinh A \cosh B+\cosh A \sinh B
$$

and find a similar expression for $\cosh (A+B)$.
(ii) Differentiate $\tanh x$.

6 (i) Express $\cosh (1+x)$ as a power series in x.
(ii) Find the first three terms in the power series expansion of

$$
\frac{1+x}{1-x^{2}}
$$

Plot the function and the sum of the first three terms in the power series. For what range of x would you expect the first three terms to be a reliable approximation?
$7 \dagger \quad$ Show that

$$
\left(\frac{d}{d x}\right)^{n}(a+b x)^{\alpha}=\alpha(\alpha-1)(\alpha-2) \ldots(\alpha-n+1) b^{n}(a+b x)^{\alpha-n}
$$

Hence find the coefficient of x^{7} in the power series expansion of $(2+3 x)^{-1 / 2}$.

Limits and Approximations

8 Evaluate
(a) $\dagger \quad \operatorname{Lim}_{x \rightarrow 0} \frac{\sin x}{x}$
(b) $\dagger \quad \operatorname{Lim}_{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$
(c) $\operatorname{Lim}_{x \rightarrow \pi / 2} \frac{\ln (x-\pi / 2)}{\tan x}$
(d)* $\quad \operatorname{Lim}_{x \rightarrow \infty} \frac{x+1}{x^{2}+6 x} \exp \left[\frac{x^{2}}{1+x^{2}}(\ln x+2)\right]$

9 Show that if α is small, then
(a) $\frac{\sin ^{2} \alpha}{\alpha^{2} \sqrt{1-\left(\sin ^{2} \alpha\right) / 3}} \approx 1-\frac{\alpha^{2}}{6}$. [If you get $1+\frac{\alpha^{2}}{6}$ then think again!]
(b)* $\frac{\sin ^{2} \alpha}{\alpha^{2} \sqrt{1-2\left(\sin ^{2} \alpha\right) / 3}} \approx 1-\frac{\alpha^{4}}{90}$.

Suitable past Tripos questions:
02 Q2a; 03 Q2a; 04 Q2a; 05 Q1 (short); 08 Q4b, 09 Q1 (short), Q4a (long), 10 Q2 (short); 11 Q2 (short); 12 Q1 (short).

Hints

2 The Matlab/Octave script for doing this can be downloaded from the CamTools site for this paper (Eng. Tripos 1P4). The script/code comes in a file called Ex2_Q2_script.m, also available under resources/Longley. Save this in a folder somewhere, start Matlab/Octave from the same folder (or use the "cd" command to navigate to that folder), then type "Ex2_Q2_script" to run the code. Use a text editor to change the values of s and t near the top of the file Ex2_Q2_script.m, then run the code again.

Answers

$1 \quad \operatorname{det} \mathbf{A}=-19, \quad \operatorname{det} \mathbf{B}=-3, \quad \operatorname{det} \mathbf{A B}=57$
$2 \quad s=2, t=\frac{13}{5}$
$3 \quad 12$
4
(i) $k>5,-27<k<0$
(ii) $k=0$ and $k=5$ (one root is repeated)

5
(i) $\cosh A \cosh B+\sinh A \sinh B$
(ii) $\operatorname{sech}^{2} x\left[=\frac{1}{\cosh ^{2} x}\right]$
(i) $\cosh 1+x \sinh 1+\frac{x^{2}}{2!} \cosh 1+\frac{x^{3}}{3!} \sinh 1$
(ii) $1+x+x^{2}$
$7 \quad-2 \cdot 531$
8
(a) 1
(b) 2
(c) 0
(d) e^{2}

JPL/PCW October 13

