Part IB Paper 6: Information Engineering

SIGNAL AND DATA ANALYSIS

Examples paper 5
(Before starting this examples paper it is a good idea to revise your 1A Maths notes on Fourier Series and on Convolution)

Revision of Fourier Series

1 The function

$$
y(x)= \begin{cases}x(\pi+x) & -\pi \leq x \leq 0 \\ x(\pi-x) & 0 \leq x \leq \pi\end{cases}
$$

is represented by a Fourier series of period 2π. Which derivatives (first, second, etc.) of the function represented by this Fourier series are continuous for all values of x ? How do the coefficients in the series vary with n ? Verify your answer to the latter question by evaluating the coefficients.

2 The function $y(t)$ is represented by a Fourier Series of the form

$$
y(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right\} \quad \omega_{0}=\frac{2 \pi}{T}
$$

over the range $0<\mathrm{t}<\mathrm{T}$. By expressing the sines and cosines as complex exponentials, show that y can be represented by a complex Fourier Series of the form

$$
y(t)=\sum_{n=-\infty}^{\infty} c_{n} \exp \left(j n \omega_{0} t\right),
$$

and find c_{n} in terms of the a's and b's. Pay particular attention to the cases $\mathrm{n}=0$ and n negative.
Show that $\mathrm{c}_{\mathrm{n}}^{*}=\mathrm{c}_{-\mathrm{n}}$.

3 A function $\mathrm{y}(\mathrm{t})$ having period T is defined as

$$
y(t)=\left\{\begin{array}{cc}
\exp (-\alpha \mathrm{t}) & 0 \leq \mathrm{t} \leq \mathrm{T} / 2 \\
0 & \mathrm{~T} / 2 \leq \mathrm{t} \leq \mathrm{T}
\end{array} .\right.
$$

Obtain the coefficients c_{n} in the complex Fourier series for $y(t)$, where

$$
y(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{2 \pi \mathrm{in} / T}
$$

Hence obtain the coefficients a_{n} and b_{n} in the real Fourier series for $y(t)$, where

$$
y(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{2 \pi n t}{T}+\sum_{n=1}^{\infty} b_{n} \sin \frac{2 \pi n t}{T}
$$

$$
\mathrm{f}(\mathrm{t})=\frac{4}{\pi} \sum_{\substack{\mathrm{n}=1 \\ \mathrm{n} \text { odd }}}^{\infty} \frac{1}{\mathrm{n}} \sin \mathrm{n} \omega_{0} \mathrm{t}
$$ where $\omega_{0}=\frac{2 \pi}{T}$

Hence find the coefficients c_{n} in the complex Fourier Series representation

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j 2 \pi n / T}
$$

Verify that your answer is correct by finding c_{n} from the relationship

$$
c_{n}=\frac{1}{T} \int_{0}^{T} f(t) \exp \left[-j n \omega_{0} t\right] d t
$$

5 Show that the square wave $f_{2}(t)$, which is symmetric about $t=0$, is related to $f(t)$ of question 4 by $f_{2}(t)=f(t+a)$, and find the value of a.

Using the result of question 4 , show that

$$
\begin{aligned}
f_{2}(t)= & \sum_{n=-\infty}^{\infty} d_{n} e^{j 2 \pi n t / T} \\
& \text { where } d_{n}=c_{n} \exp \left[\frac{j n \pi}{2}\right]
\end{aligned}
$$

6 The coefficients in a complex Fourier Series representation of the function $f(t)$ over the range $0<\mathrm{t}<\mathrm{T}$ are $\frac{(-1)^{\mathrm{n}}}{\mathrm{n}^{4}}$.
Which derivatives of f are continuous for all values of t ? Derive expressions for the complex coefficients in the Fourier Series representations of
(i) $\frac{\mathrm{df}}{\mathrm{dt}}$
(ii) $\frac{d^{2} f}{d t^{2}}$
(iii) $\int \mathrm{fdt}$

In the last case what can you say about c_{0} ?

Convolution

By evaluating the convolution integral directly, find the convolution of $f(t)$ and $g(t)$, where

$$
f(t)=\left\{\begin{array}{ll}
t & t \geq 0 \\
0 & t<0
\end{array} \quad \text { and } \quad g(t)=\left\{\begin{array}{cc}
\exp (-\alpha t) & t \geq 0 \\
0 & t<0
\end{array} .\right.\right.
$$

8 For any functions f and g show that

$$
\int_{\tau=0}^{t} f(\tau) g(t-\tau) d \tau=\int_{\tau=0}^{t} f(t-\tau) g(\tau) d \tau
$$

9 It is desired to find the convolution of the functions f and g, where

$$
f(t)=\left\{\begin{array}{ll}
1 & 0 \leq t \leq T \\
0 & \text { otherwise }
\end{array} \quad \text { and } \quad g(t)=\left\{\begin{array}{cc}
\exp (-\alpha t) & t \geq 0 \\
0 & t<0
\end{array}\right.\right.
$$

For a fixed value of $t(t>0)$, sketch $f(\tau)$ and $g(t-\tau)$ as functions of τ. Using your sketches, explain why the convolution of f and g will have three different forms in the ranges
(i) $\mathrm{t}<0$
(ii) $0 \leq t \leq T$
(iii) $\mathrm{T}<\mathrm{t}$

Evaluate the convolution of f and $g, \int_{\tau=0}^{t} f(\tau) g(t-\tau) d \tau$.

Answers

1 The value and first derivative are continuous: the coefficients are $\mathrm{O}\left(1 / \mathrm{n}^{3}\right)$.

$$
y(x)=\frac{8}{\pi} \sum_{n} \frac{\sin n x}{n^{3}}(n=1,3,5, \ldots)
$$

$2 \quad \mathrm{c}_{0}=\frac{\mathrm{a}_{0}}{2}, \quad \mathrm{c}_{\mathrm{n}}=\frac{\mathrm{a}_{\mathrm{n}}-\mathrm{j} \mathrm{b}_{\mathrm{n}}}{2}$ for $\mathrm{n}>0, \quad \mathrm{c}_{\mathrm{n}}=\frac{\mathrm{a}_{-\mathrm{n}}+\mathrm{j} b_{-n}}{2}$ for $\mathrm{n}<0$
$3 \quad c_{n}=\frac{1-e^{-\alpha T} / 2-\mathrm{in} \pi}{\alpha \mathrm{T}+2 \mathrm{in} \pi}$.

$$
a_{0}=\frac{2\left(1-e^{-\alpha T} / 2\right)}{\alpha T} \quad a_{n}=\frac{2 \alpha T\left(1-e^{-\alpha T} / 2 \cos n \pi\right)}{\alpha^{2} T^{2}+4 n^{2} \pi^{2}} \quad b_{n}=\frac{4 n \pi\left(1-e^{-\alpha T / 2} \cos n \pi\right)}{\alpha^{2} T^{2}+4 n^{2} \pi^{2}}
$$

$4 \quad c_{n}=\frac{2}{j n \pi}$ for n odd (valid for positive and negative n), $c_{n}=0 \quad n$ even.
$5 \quad a=\frac{T}{4}$

6 The value, first and second derivatives are continuous.
(i) $j \omega_{0} \frac{(-1)^{n}}{n^{3}}$
(ii) $\omega_{0}^{2} \frac{(-1)^{n+1}}{n^{2}}$
(iii) $\frac{(-1)^{n}}{j \omega_{0} n^{5}} \quad c_{0}$ depends on constant of integration.
$7 \quad \frac{\mathrm{t}}{\alpha}-\frac{1}{\alpha^{2}}+\frac{\mathrm{e}^{-\alpha t}}{\alpha^{2}} \quad$ for $\mathrm{t} \geq 0 \quad$ (and 0 for $\mathrm{t}<0$).

9
(i) 0
(ii) $\frac{1-\mathrm{e}^{-\alpha t}}{\alpha}$
(iii) $\frac{\mathrm{e}^{-\alpha(\mathrm{t}-\mathrm{T})}-\mathrm{e}^{-\alpha \mathrm{t}}}{\alpha}$

JL
Nov. 2007
Michaelmas 2013

