
---ISSUED OM

27 	NOV 2013

Engineering Tripos Part IA 	 FIRST YEAR

Paper 4: Mathematical Methods

COMPUTING

Examples Paper 4/j.

Straightforward questions are marked t.
Tripos standard (but not necessarily Tripos length) questions are marked *.
Hints and answers can be found at the back of the paper.

Questions 1 to 13 are elementary review exercises covering basic C++ principles and
control statements. They should take no more than a few minutes each. If you have
difficulty with these questions, refer to Sections 1-6 of the Tutorial Guide to C++ Pro­
gramming, on the Departmental web pages, and also re-read the online handout of the
Michaelmas lab. You are also highly encouraged to type the code fragments that appear
in the questions and play with them on your own computer. Instructions on how to ob­
tain compilers for your own computers can be found on the Departmental web pages at
http://www-h.eng.cam.ac . ukl under the C++ section.

1. t State whether each of the following statements is true or false. If false, explain why.

(a) 	When a program is executed, any comments cause the computer to display on
the screen the text after the I I symbol.

(b) All variables must be declared before they are used.

(c) All variables must be assigned a type when they are declared.

(d) 	C++ considers the variables temporary and TEMPORARY to be identical.

(e) 	The modulus operator ('Yo) can be used only with integer operands.

(f) 	The arithmetic operators *, I, 'Yo, + and - all have the same level of precedence.

2. t Match the variables (left) with the data items (right).

(a) float f; (i) true
(b) char c; (ii) 4
(c) bool b; (iii) 3.85
(d) int i; (iv) "hello"
(e) char s [J; (v) 'a'

For Questions 3 to 13, assume the following variable declarations:

int i, j, x, y;
bool bt, b2;

1

http:http://www-h.eng.cam.ac
sme35
Rectangle

sme35
Rectangle

sme35
Rectangle

sme35
Rectangle

sme35
Rectangle

3. 	 t Identify and correct the bugs in each of the following C++ statements. Explain
how each statement would malfunction if the bugs were not corrected.

(a) 	 if (i > 3);

cout « "i is greater than 3" « endl;

(b) 	 if (i =< 4)

cout « "i is equal to or less than 4" « endl;

4. 	 t What, if anything, is displayed on the screen when each of the following
statements is executed? Assume i = 3 and j 4.

(a) cout « i . , (b) cout « i + i',
(c) cout « "i = " ,. (d) cout « "i = " « ij
(e) cout « endl; (f) cout « i + j « " = " «j + i ;
(g) x 	= i + j; (h) II cout « "i + j = " « i + j;
(i) cin » i » j;

5. 	 t What is the value of x after each of the following statements is executed?

(a) 	x = 4 + 3 * 8 I 2 - 1;

(b) 	x 4 % 4 4 I 4 + 4 * 4;

(c) 	 x = (3 * 5 * (3 + (5 * 3 I (3))));

6. 	 t What is the value of b2 after each of the following statements is executed? Assume
b1 false and j = 9.

(a) 	b2 j > 9 && !b1;

(b) b2 b1 II j == 9;

(c) 	b2 (j != 5) && b1;

(d) if 	(!bi) b2 = true; else b2 = false;

7. 	 t Write some C++ code to determine whether an integer variable i is odd or even
and display the outcome on the screen.

8. 	 t Determine the output for each of the following C++ code segments when x = 14
and y = 16 and when x = 16 and y = 14. How would you rewrite the code segments
to make their behaviour more readily apparent?

(a) 	 if (x < 15)

if (y > 15)

cout « "hello" « endl;

else

cout « "goodbye" « endl;

cout « "world" « endl;

2

(b) 	 if (x < 15) {

if (y > 15)

cout « "hello" « endl; }

else {

cout « "goodbye" « endl;

cout « "world ll « endl; }

9. 	 t The following C++ code should print the numbers 1 to 20. Identify and correct
the bug in the code.

j = 1;
while (j < 20) {

cout « j « endl;

j = j + 1;

}

10. 	 t What do the following two code segments print for the cases x = 1 and x 10?

while (x > 1) { do {

cout « x « ' '; cout «x « ' ';

X--i x--;

} } while ex > 1);

11. 	 t What does the following C++ code do if x and yare both positive? What happens
if one or the other of x and y is zero or negative?

for (i = 1; i <= y; i++) {

for (j = 1; j <= Xi j++) cout « '*';

cout « endl;

}

12. 	 t Write three code segments using for loops to display the following three
patterns separately on the screen.

******* ********
** ****** *****
*** ***** ***
**** **** *
***** ***

****** **

 *

2 3

3

1

sme35
Rectangle

13. 	 t The following code should print whether b1 is true or false. Identify and correct
the bug.

switch (b1) {

case true:

cout « "b1 is true" « endl;

case false:

cout « "b1 is false" « endl;

}

Questions 14 to 17 address the use of functions in C++, including the two parameter
passing mechanisms call by value and call by reference. If you have difficulty with these
questions, refer to Sections 7-8 of the Tutorial Guide to Programming. Question 16
introduces the concept of recursion.

14. 	 t Identify and correct the bugs in the following function definitions.

(a) 	 int sum(int a, int b)
{

int result;

result = a + b;

}

(b) 	double square(double number)
{

double number;

return number * number;

}

(c) 	 void times_two(float number)
{

float result;
result = 2.0 * number;
cout « "Two times 11 « number « 11 is " « result « endl;
return result;

}

15. 	Consider the following C++ function definition.

int multiply(int n1, int n2)
{

int result = 0;
while (nl > 0) {

result = result + n2;

n1--;

4

}

return result;
}

The function is called with the statement c = multiply(a,b), where the integer
variables a and b are initially set to 2 and 3 respectively. What are the contents of a,
band c immediately after the call? Would you change your answer if the first line of
the definition were changed to int multiplyCint &nl, int &n2)? When will the
function fail to return the correct answer?

5

16. * Consider the following function definition.

int sum(int n)
{

if (n == 0) return 0;
else return n + sum(n-1);

}

The function is called with the statement a = sum(3). Draw a diagram showing each
subsequent call to the function and the corresponding return values. What will be
the final value returned to the variable a? What would happen if the function were
called with the statement a = sum(-i}?

17. t Consider the following program.

int mainO
{

float 11, 12, angle;
cout « "Enter two lengths and an angle." « endl;
cin » 11 » 12 » angle;
cout « "Area is " « AreaTriangle(l1, 12, angle) « endl;
return 0;

}

float AreaTriangle(float a, float b, float theta)
{

return (0.5 * a * b * sin(theta»;
}

The program will not compile without appropriate header files and function proto­
types. Write down the extra lines that must be inserted at the top of the program,
and explain their purpose.

Questions 18 to 21 address the use of one- and two-dimensional arrays in C++. If you
have difficulty with these questions, refer to Sections 9 and 11 of the Tutorial Guide to
C++ Programming.

18. Find the bugs in the following C++ function which performs vector addition.

void vector_add(float a[], float b[], float &c[], int n)
II Adds the n-element vectors a and b, storing the result in c.

{

for (i = 1; i <= n; i++) c[i] a[i] + b[i];
return c;

}

Which of the bugs would you expect to be picked up by the compiler?

6

19. 	Write a function vector...mean that takes two parameters, an array of integers a and
the length of the array n, and returns the mean value of the elements in the array.

20. 	 t Write some code to declare a 3 x 3 matrix m1 and initialise it to represent a rotation
by an angle () around the z-axis.

21. 	 The following code segment uses the function vector...mean from Question 19
to calculate the average of the elements in the integer matrix m2. How many rows
and columns must m2 have?

total = 0.0;

for (i 0; i < n; i++) total total + vector_mean(m2[i], r);

result = total I n;

Questions 22 to 25 addr-ess the use of data structur-es in C++. If you have difficulty with
these questions, r-efer- to Section 11 of the Tutorial Guide to Programming.

22. 	 t Consider the following structure definition.

struct Date {

int year;

int month; II in the range 1 to 12

int day; II valid range depends on the month

};

Write some code to declare a variable today of type Date and set it to today's date.

23. 	 * Given the definition of the Date structure in Question 22, the following function
is supposed to check whether a date is valid. To simplify the exercise, we assume
that leap years never happen. The function should return true for a valid date and
false for an invalid date, and reset any invalid date to 1 January 2000. Identify and
correct the two bugs in the function definition.

bool valid_date(Date today)
{

bool valid = true;
const int days[12] {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

if 	(today.month < 1 I I today.month > 12)
valid = false;

else
if 	(today.day < 1 I I today.day > days[today.month]) valid false;

if 	(! valid) {
today.year = 2000; today.day = 1; today.month = 1;

}

return valid;
}

7

24. 	 * Given the definition of the Date structure in Question 22, write a function to work
out tomorrow's date given today's date. The function should have the header

bool tomorrow(Date today, Date &tomorrow)

and should return true if tOday is valid and false otherwise. Your function may
call the (de-bugged) function valid_date, which is defined in Question 23.

25. 	 * Write down a definition for a Time data type, with separate fields for the hours,
minutes and seconds. Use this new data type to extend the Date structure in Ques­
tion 22 to include the time as well as the date. Explain why any high level code
that calls the functions valid_date and tomorrow (see Questions 23 and 24) is not
affected by this extension. How would you extend the valid_date function to check
the validity of the Time as well? Discuss the importance of data abstraction for
software maintenance.

Suitable past Tripos questions: 2004 Qu. 10, 2006 Qu. 12, 2008 Qu. 11

Hints

2. 	 Remember that single characters are enclosed inside single quotation marks, whereas
character arrays (strings) have double quotation marks.

3. 	 (a) Look for a rogue semicolon. (b) Look for an illegal relational operator.

4. 	 Anything inside quotation marks is displayed verbatim. Expressions outside quotation
marks are evaluated and then displayed.

5. 	 In the absence of parentheses, *, / and %take precedence over + and -.

6. 	 Remember that && is the logical AND operator, II is the logical OR operator, and
is the logical NOT operator. The precedence rules are that relational operators like>
and == are evaluated before logical operators like && and II.

7. 	 The modulus operator is very useful here, since x % 2 gives different answers for odd
and even x.

8. 	 Remember that only one statement is executed conditionally in an if construction,
unless multiple statements are grouped together using curly brackets. Remember also
that constructions like if (b) a1; else s2; count as one statement.

9. 	 Look carefully at the termination condition of the while loop: what is the last number
the loop will print?

8

10. 	 Remember that a do loop always executes at least once, since the termination condi­
tion is checked at the end of the loop. x-- means "decrement x by one" .

11. 	 Bear in mind that a for loop may not execute even once if its termination condition is
met immediately: this might happen if one or the other of x and y is zero or negative.

12. 	 Use two loops, with one nested inside the other. Make the outer loop count up for
the first pattern and down for the other two. For the third pattern, you'll need to
decrement the outer loop counter by two at the end of each iteration.

13. 	 Look for a missing break statement.

14. 	 (a) An int function should return something. (b) A formal parameter should not be
declared as a local variable. (c) A void function should not return anything.

15. 	 With call by value (no &'s in the header), the function makes a private copy of the
actual parameters before operating on them. vVith call by reference (&'s in the header),
the function operates directly on the actual parameters.

16. 	 This is an example of a recursive function, ie. one that calls itself. A recursive function
is used to solve a problem, in this case calculating L~o i for n 2:: O. The function
actually knows how to solve only the simplest case with n = O. To solve harder cases,
the function breaks the problem down into two pieces: L~o i == n + L~l i. For
recursion to work, the second piece must be a slightly smaller version of the original
problem, which indeed it is. So the function calls itself to solve the smaller problem,
launching a new version of sum while the original call is still open. One call follows
another, with no returns, until the surn(O) call, which returns 0 without needing to
make further calls: this is the simple case we know the answer to. All the other returns
now happen, in the reverse order to the calls.

(1)
x
(1)
(')
c...... o·
::::J

sum (3);

retu rn 3 + ???; ---.....

sum (2);
return 2 + ???; ---.....

sum (1);
return 1 + ???; ---.....

sum (0);
return 0;

return 1+0 =1'~
return 2+1 =3; ~ f

return 3+3 = 6: ~

17. 	 The header files, namespace declaration and function prototypes are missing.

18. 	 Check the range of the array indices inside the for loop. Are all local variables
properly declared? Remember that arrays are always passed as reference to functions,
with no need for the & notation. A void function should not return anything.

9

19. 	 Bear in mind that the mean of a set of integers may not be an integer.

20. 	 A matrix is a two-dimensional array. Individual elements are accessed using two
indices: ego m1 [0] [1J = -sin(theta).

21. 	 m2 [iJ is the ith row of the matrix m2. Remember that a row of a matrix is the same
as an array.

22. 	 The individual fields of a structure are accessed using the "dot" notation: ego to set
the year to 2001, we'd use the statement today. year = 2001.

23. 	 The line beginning const int days [12J initialises the array with the twelve num­
bers inside the curly brackets. Bear in mind that if a function needs to change a
parameter, then that parameter must be passed by reference. Check the index of the
days array.

24. 	 The function should immediately return false if the date today is not valid. Then
add one to the day and check it hasn't overshot the end of the month: if so, reset the
day to 1 and add one to the month. Then check that the month hasn't overshot the
end of the year: if so, reset the month to 1 and add one to the year. You could recycle
the days array from Question 23 to store the number of days in each month.

25. 	 Try to ensure that the extended valid_date function does not know what's inside the
Time structure, so that the function would not need modifying were we to ever change
or extend the definition of Time. This sort of careful data abstraction localises the use
of data types to particular functions, minimising the impact of any future changes.

Answers

1. (a) False. (b) True. (c) True. (d) False. (e) True. (f) False.

2. (a) (iii); (b) (v); (c) (i); (d) (ii); (e) (iv).

3. (a) Remove the semicolon at the end of the first line. (b) Replace =< with <=.

4. 	 (a) 3
(c) 	 i
(e) 	 The cursor moves to the next line.
(g) 	 Nothing is displayed.
(i) 	 Whatever the user types is displayed.

5. (a) 15. (b) 15. (c) 120.

6. (a) false. (b) true. (c) false. (d) true.

S. 	 For x = 14 and y = 16: (a) hello
world

10

(b) 	 6
(d) 	 i = 3
(f) 	 7 = 7
(h) 	 Nothing is displayed.

(b) hello

For x 16 and y 14: (a) world (b) 	goodbye

world

9. 	 Replace while (j < 20) with while (j <= 20).

10. 	For x 1, the left loop prints nothing, the right loop prints 1.
For x 10, both loops print 10 9 8 7 6 5 4 3 2.

11. 	For x and y both positive, prints a y x x rectangle of asterisks.
For x non-positive, moves the cursor down y lines. For y non-positive, does nothing.

13. 	Insert the line break; immediately before the line case f al se : .

14. 	(a) Add the line return result; immediately before the closing brace.
(b) 	Delete the line double number;.
(c) 	Either delete the line return result;

or change the header to float times_two(float number).

15. 	a = 2, b = 3, c = 6. a = 0, b = 3, c = 6. vVhen a is negative.

16. 	 sum(3) returns 6. sum(-1) crashes the program.

17. 	The missing lines are:

#include <iostream>

#include <cmath>

using namespace std;

float AreaTriangle(float a, float b, float theta);

18. 	The corrected function is:

void vector_add(float a[], float b[], float c[], int n)
II 	Adds the n-element vectors a and b, storing the result in c.

{

int i;
for Ci 0; i < n; i++) c[i] aU] + b [i] ;

}

21. 	m2 must have n rows and r columns.

23. 	Two lines need to be corrected as follows:

bool valid_date(Date &today)

if (today.day < 1 I I tOday.day > days[today.month-l]) valid = false;

--DahQI _C~s<tnYL

r MTchaeimasi013 .

11

sme35
Rectangle

sme35
Rectangle

sme35
Rectangle

sme35
Rectangle

