29 JAN 2014

Part 1A Paper 3: Electrical and Information Engineering, ELECTROMAGNETICS

 EXAMPLES PAPER 1 Electromagnetics

 EXAMPLES PAPER 1 Electromagnetics}

Straightforward questions are marked with a + and more difficult questions are marked with a^{*}.

1. A solid sphere of radius a and dielectric constant ε_{l} has a uniformly distributed volume charge of $\rho_{v} \mathrm{C} \mathrm{m}^{-3}$. Calculate the flux density D both inside and outside the sphere and sketch a plot of flux density D versus radius r.
2. The conductors of a coaxial television cable have inner and outer radii of r_{1} and r_{2}. They are separated by a dielectric with a relative permittivity of ε_{r}. The inner conductor has a charge per unit length of ρ. The radius r_{2} of the earthed outer conductor, and the voltage V applied to the inner are both considered fixed. Determine the capacitance per metre length of the cable.
*Show, by varying the radius r_{l} of the inner conductor, that the electric field at its surface is least when $r_{2} / r_{1}=e$.

3*. A long thin cylindrical conductor 5 cm in diameter runs parallel to the ground at a height of 50 m above the ground, measured from the centre of the conductor, (see Fig. 1 below). The conductor is at a potential of 50 kV relative to earth.

Fig. 1

What is the electric field strength on the ground immediately below the conductor? What is the capacitance between the conductor and ground?
4^{+}. A long straight cylindrical solenoid has 10 turns per cm wrapped around a non-magnetic core of radius 5 cm . What current is required to produce a magnetic flux ϕ of $1 \times 10^{-3} \mathrm{~Wb}$ inside the solenoid? What is the corresponding magnetic flux density B ? What if the solenoid were filled with soft iron?

5*. A toroid of rectangular cross section has inner and outer radii R_{1} and R_{2} and axial thickness b, as shown in Fig. 2 below. It is wound uniformly with a single layer of N turns of wire around a non-magnetic core. Find the coil's self inductance L.

Note: You cannot assume that B is constant over the cross section of the coil. Use Ampère's law to find B as a function of radius r within the coil and then integrate B over the rectangular cross section to obtain the flux.

Fig. 2

6*. A rectangular coil of N turns is brought close to a long straight overhead power-line conductor as shown in Fig. 3 below. Find an expression and value for the mutual inductance between the power-line conductor and the coil. Hence, find the rms current in the power line at 50 Hz if $s=1 \mathrm{~m}, a=b=20 \mathrm{~cm}, N=120$ turns, and 68 mV is read on a high impedance ac voltmeter connected to the coil terminals.

Fig. 3

Answers 1. $D=\frac{r}{3} \rho_{v} \quad$ for $0<r \leq a ; \quad D=\frac{a^{3}}{3 r^{2}} \rho_{v} \quad$ for $r \geq a$.
2. $C=\frac{2 \pi \varepsilon_{0} \varepsilon_{r}}{\ln \left(r_{2} / r_{1}\right)} \mathrm{Fm}^{-1}$
3. $E=\frac{\rho}{2 \pi \varepsilon_{0}}\left[\frac{1}{h-x}+\frac{1}{h+x}\right], C=\frac{2 \pi \varepsilon_{0}}{\ln (2 h / a)}, 241 \mathrm{Vm}^{-1}, 6.7 \mathrm{pFm}^{-1}$
4. $\phi=\mu_{0} N I \pi r^{2}, 101 \mathrm{~A}, 0.13 \mathrm{~T}$.
5. $B=\frac{\mu_{0} N I}{2 \pi r}, L=\frac{\mu_{0} N^{2} b}{2 \pi} \ln \left(\frac{R_{2}}{R_{1}}\right)$
6. $M=\frac{\mu_{0} N b}{2 \pi} \ln \left(\frac{s+a}{s}\right), 8.75 \times 10^{-7} \mathrm{H}, 247 \mathrm{~A}$.

