ISSUED ON

29 JAN 2014

Part 1A Paper 3: Electrical and Information Engineering, ELECTROMAGNETICS

EXAMPLES PAPER 1 Electromagnetics

Straightforward questions are marked with a + and more difficult questions are marked with a^* .

1. A solid sphere of radius *a* and dielectric constant ε_l has a uniformly distributed volume charge of $\rho_v C m^{-3}$. Calculate the flux density *D* both inside and outside the sphere and sketch a plot of flux density *D* versus radius *r*.

2. The conductors of a coaxial television cable have inner and outer radii of r_1 and r_2 . They are separated by a dielectric with a relative permittivity of ε_r . The inner conductor has a charge per unit length of ρ . The radius r_2 of the earthed outer conductor, and the voltage V applied to the inner are both considered fixed. Determine the capacitance per metre length of the cable.

*Show, by varying the radius r_1 of the inner conductor, that the electric field at its surface is least when $r_2/r_1 = e$.

 3^* . A long thin cylindrical conductor 5 cm in diameter runs parallel to the ground at a height of 50 m above the ground, measured from the centre of the conductor, (see Fig.1 below). The conductor is at a potential of 50 kV relative to earth.

What is the electric field strength on the ground immediately below the conductor? What is the capacitance between the conductor and ground?

4⁺. A long straight cylindrical solenoid has 10 turns per cm wrapped around a non-magnetic core of radius 5cm. What current is required to produce a magnetic flux ϕ of 1×10^{-3} Wb inside the solenoid? What is the corresponding magnetic flux density *B*? What if the solenoid were filled with soft iron?

5*. A toroid of rectangular cross section has inner and outer radii R_1 and R_2 and axial thickness b, as shown in Fig. 2 below. It is wound uniformly with a single layer of N turns of wire around a non-magnetic core. Find the coil's self inductance L.

Note: You cannot assume that B is constant over the cross section of the coil. Use Ampère's law to find B as a function of radius r within the coil and then integrate B over the rectangular cross section to obtain the flux.

6*. A rectangular coil of N turns is brought close to a long straight overhead power-line conductor as shown in Fig.3 below. Find an expression and value for the mutual inductance between the power-line conductor and the coil. Hence, find the **rms** current in the power line at 50 Hz if s = 1 m, a = b = 20 cm, N = 120 turns, and 68 mV is read on a high impedance ac voltmeter connected to the coil terminals.

Answers
1.
$$D = \frac{r}{3} \rho_{\nu}$$
 for $0 < r \le a$; $D = \frac{a^3}{3r^2} \rho_{\nu}$ for $r \ge a$.
2. $C = \frac{2\pi\varepsilon_0\varepsilon_r}{\ln(r_2/r_1)}$ Fm⁻¹
3. $E = \frac{\rho}{2\pi\varepsilon_0} \left[\frac{1}{h-x} + \frac{1}{h+x} \right]$, $C = \frac{2\pi\varepsilon_0}{\ln(2h/a)}$, 241 Vm⁻¹, 6.7pFm⁻¹
4. $\phi = \mu_0 N I \pi r^2$, 101 A, 0.13 T.
5. $B = \frac{\mu_0 N I}{2\pi r}$, $L = \frac{\mu_0 N^2 b}{2\pi} \ln\left(\frac{R_2}{R_1}\right)$
6. $M = \frac{\mu_0 N b}{2\pi} \ln\left(\frac{s+a}{s}\right)$, 8.75x10⁻⁷ H, 247 A.

Dr TD Wilkinson Lent 2014