Module Leader

Dr T Long [1]

Lecturers

Dr P Palmer and Dr T Long

Lab Leader

Dr T Long

Timing and Structure

Michaelmas term. 2 lectures/week.

Aims

The aims of the course are to:

- Introduce power electronics as an interface technology.
- Introduce power semiconductor devices and circuits, describing their use in a range of applications includin rectification, linear and switch-mode power supplies, a.c. power control circuits and dc-ac inverters using pulse-width modulation.

Objectives

As specific objectives, by the end of the course students should be able to:

- Know the characteristics of the diode and how to use diodes in rectifier circuits to obtain d.c. from single and three-phase a.c.
- Know how to reduce ripple using smoothing circuits.
- Know the characteristics of the thyristor and how to use the thyristor in controlled rectifiers operating from single or three-phase supplies.
- Be able to explain the conditions under which inversion, i.e. the flow of power from the d.c. to the a.c. side, takes place.
- Appreciate the relative merits of MOSFETs, IGBTs and bipolar transistors as switches.
- Be aware of the principal types of converter circuit and their characteristics.
- Know the principle of pulse-width modulation and simple ways of generating pulse-width modulated waveforms.
- Be familiar with three-phase inverter circuits using pulse-width modulation.
- Be familiar with the essential elements of a complete switch-mode power supply.
- Be able to analyse the operation of a simple SMPS.
- Describe the various losses and estimate the efficiency of a Power Electronic System.
- Appreciate the role of power electronic converters in various applications.

Content

Published on CUED undergraduate teaching site (https://teaching.eng.cam.ac.uk)

- The diode; simple rectifier circuits using diodes. Three-phase rectification. Smoothing circuits and waveform distortion. Regulated supplies using linear circuit techniques.
- The thyristor. Controlled rectification and inversion using thyristors.
- The MOSFET, IGBT and bipolar transistor as power switches.
- Basic switching converter configurations: the up and down converters. The concept of pulse width
 modulation; the generation of pulse-width modulated waveforms. Converters with isolation. Introduction to
 magnetics and components.
- Power losses in converters. ZCS and ZVS Resonant converters.
- Outline design for a complete switch-mode power supply including power factor correction.
- Half and full bridge circuits, Deadtime and the problem of the high side drive. The application of chopper circuits in DC motor drives.
- Single phase and three-phase invertercircuits. Variable voltage variable frequency three-phase inverter for use in induction motor drives.
- · Transient Analysis in circuits.

Coursework

Switch-Mode Electronics

Learning objectives:

- •
- •
- •

Practical information:

- Sessions will take place in [Location], during week(s) [xxx].
- This activity [involves/doesn't involve] preliminary work ([estimated duration]).
- •

Full Technical Report:

Students [will/won't] have the option to submit a Full Technical Report.

Booklists

Please see the **Booklist for Part IIA Courses** [2] for references for this module.

Examination Guidelines

Please refer to Form & conduct of the examinations [3].

UK-SPEC

This syllabus contributes to the following areas of the **UK-SPEC** [4] standard:

Toggle display of UK-SPEC areas.

GT1

Develop transferable skills that will be of value in a wide range of situations. These are exemplified by the Qualifications and Curriculum Authority Higher Level Key Skills and include problem solving, communication, and

Published on CUED undergraduate teaching site (https://teaching.eng.cam.ac.uk)

working with others, as well as the effective use of general IT facilities and information retrieval skills. They also include planning self-learning and improving performance, as the foundation for lifelong learning/CPD.

IA1

Apply appropriate quantitative science and engineering tools to the analysis of problems.

KU1

Demonstrate knowledge and understanding of essential facts, concepts, theories and principles of their engineering discipline, and its underpinning science and mathematics.

KU2

Have an appreciation of the wider multidisciplinary engineering context and its underlying principles.

E1

Ability to use fundamental knowledge to investigate new and emerging technologies.

E2

Ability to extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools when appropriate.

E3

Ability to apply mathematical and computer based models for solving problems in engineering, and the ability to assess the limitations of particular cases.

P1

A thorough understanding of current practice and its limitations and some appreciation of likely new developments.

P3

Understanding of contexts in which engineering knowledge can be applied (e.g. operations and management, technology, development, etc).

US1

A comprehensive understanding of the scientific principles of own specialisation and related disciplines.

US2

A comprehensive knowledge and understanding of mathematical and computer models relevant to the engineering discipline, and an appreciation of their limitations.

Last modified: 09/10/2017 15:52

Source URL (modified on 09-10-17): https://teaching.eng.cam.ac.uk/content/engineering-tripos-part-iia-3b3-switch-mode-electronics-2017-18

Published on CUED undergraduate teaching site (https://teaching.eng.cam.ac.uk)

Links

- [1] mailto:tl32t@cam.ac.uk
- [2] https://www.vle.cam.ac.uk/mod/book/view.php?id=364091&chapterid=46311
- [3] https://teaching.eng.cam.ac.uk/content/form-conduct-examinations
- [4] https://teaching.eng.cam.ac.uk/content/uk-spec