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 EGT1 
 ENGINEERING TRIPOS PART IB 
______________________________________________________________________ 
 
 Tuesday 3 June 2014        2 to 4 
______________________________________________________________________ 
 
 
 Paper 4 
 
 THERMOFLUID MECHANICS 
 
 Answer not more than four questions. 
 
 Answer not more than two questions from each section. 
 
 All questions carry the same number of marks. 
 
 The approximate number of marks allocated to each part of a question is 

indicated in the right margin. 
 
 Answers to questions in each section should be tied together and handed in 

separately. 
 
 Write your candidate number not your name on each cover sheet. 
 

STATIONERY REQUIREMENTS 
Single-sided script paper 
 
SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 
CUED approved calculator allowed 
Engineering Data Book 

 
 
You may not start to read the questions printed on the subsequent 
pages of this question paper until instructed to do so. 
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SECTION A 

Answer not more than two questions from this section. 

1  (a) A refrigerator uses the refrigerant R-134a as the working fluid.  Dry 
saturated fluid leaves the evaporator at a temperature of  −20 °C and enters the adiabatic 
compressor.  The saturation temperature in the condenser is 30 °C but the fluid leaves 
the compressor superheated by 20 °C.  The fluid leaves the condenser wet saturated and 
passes through a throttle before returning to the evaporator.  

(i) Sketch temperature-entropy, T-s, and pressure-enthalpy, p-h, diagrams for 
the refrigerator. State any assumptions made. [4] 

(ii) Calculate the specific work input required for the compressor and evaluate 
its isentropic efficiency.  [5] 

(iii) Define and evaluate the coefficient of performance (COP) for the 
refrigerator.  [3] 

(b)  A heat engine, based on a Rankine cycle, uses the refrigerant R-134a as the 
working fluid.  Wet saturated fluid from the condenser at a temperature of 10°C enters 
the feed pump where its pressure is raised to 26.33 bar.  Dry saturated fluid leaves the 
evaporator and enters the turbine which has an isentropic efficiency of  0.85.  

 (i) Sketch a T-s diagram for the heat engine. [3] 

(ii) Calculate the specific work output from the turbine. [6] 

(iii) Explain how superheating could be used to improve the cycle. [4] 
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2  (a) The specific steady flow availability function  b  is defined as   

    b = h−T0 s  

where  h is specific enthalpy,  s is specific entropy and T0  is the dead state temperature. 

(i)  Using expressions for the First and Second Laws of Thermodynamics 
applied to a steady flow process from state 1 to state 2, show that  [4] 

    b2 − b1 = −wx + 1− T0
T

"

#
$

%

&
'dq

1

2

∫ − T0Δsirrev  

 where the symbols have their usual meanings. 

(ii)  Provide a physical interpretation for each of the terms on the right hand side 
of this equation.  [4] 

(b) Two separate streams of air each have a pressure of 20 bar.  One stream has a 
mass flow rate of 20 kg s−1 and a temperature of 900 K.  The other stream has a mass 
flow rate of 80 kg s−1 and a temperature of 1800 K.  The two streams enter a constant 
pressure co-flow heat exchanger in which heat is transferred until they reach a common 
temperature Tm.  The dead state temperature T0 is 300 K.  The air should be treated as a 
perfect gas with ratio of specific heats γ =1.4  and specific heat capacity at constant 
pressure  cp = 1.01 kJ kg−1 K−1. 

 (i) Stating any assumptions made, evaluate  Tm . [2] 

(ii) Calculate the power potential that has been lost in the heat exchanger. What 
is the cause of this loss?  [5] 

(iii) The combined flow of air leaving the heat exchanger (at pressure 20 bar and 
temperature Tm) is passed through an isentropic turbine that has an exit pressure  
of 1 bar. Calculate the shaft power output from the turbine. [2] 

(c) Instead of using a heat exchanger, two separate isentropic turbines, each with an 
exit pressure of 1 bar, are used to extract work from the two streams of air at the initial 
conditions given in Part (b). Calculate the total shaft power output from the two 
turbines. Comment on the comparison of this answer with the results of Part (b).  [5] 

(d) Identify a process that could be used to combine the two streams in Part (b) with 
no loss in power potential.  [3] 
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3 (a) Show that for radial heat conduction through an annular layer of thermal 
conductivity  λ ,  with inner and outer radii of  r1  and  r2  respectively, the thermal 
resistance per unit length is  

    ln(r2 / r1)
2πλ

. [3] 

(b) Air flows along a cylindrical pipe of internal diameter d = 0.2 m at a mass flow 
rate of  !m = 1 kg s−1.  The temperature  T1 of the air at inlet to the pipe is 50 °C and the 
pressure may be assumed to be constant at  1 atm.  The pipe is made of a plastic with 
thermal conductivity  λ = 0.2 W m−1 K−1  and a wall thickness of 10 mm.  The pipe is 
encased in a 50 mm thick annular layer of insulation material with  λ = 0.05 W m−1 K−1.  
The external surface heat transfer coefficient is 200 W m−2 K−1. The temperature of the 
environment external to the pipe is  T∞  and is lower than T1 . The air in the pipe may be 
treated as a perfect gas with specific heat capacity at constant pressure                            
cp = 1.01 kJ kg−1 K−1.  

(i) Explain why there are two correlations for the convective heat transfer in 
circular pipes in the Thermofluids Data Book. [5] 

(ii) Evaluating any required fluid properties at temperature T1, choose the 
appropriate correlation from the Thermofluids Data Book and evaluate the heat 
transfer coefficient for the internal surface of the pipe. [7] 

(iii) Evaluate the total thermal resistance per unit length  Rtot  between the flow 
in the pipe and the external environment.  [5] 

(iv) Find an expression for the variation of air temperature with distance along 
the pipe  x  in terms of  T1, T∞, cp, Rtot  and !m .  Hence find the length of pipe 
required to reduce the temperature difference between the air in the pipe and the 
external environment to half of the inlet value. [5] 
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SECTION B 

Answer not more than two questions from this section. 

4  An incompressible Newtonian fluid flows along a horizontal duct of annular cross 
section. The flow is axisymmetric and, in cylindrical polar coordinates (r,θ, z) , the 
velocity and shear stress distributions are  uz (r)  and  τ rz (r) . The inner and outer radii 

are  Ri  and  Ro  respectively. 

(a)  By considering the force balance on a suitable annular fluid element, show that, 

    ( )
dz
dpr

dr
d

r rz −=τ
1   

where dzdp  is the pressure gradient in the duct. [10] 

(b) Hence show that the velocity distribution is given by  

    uz =
1
µ

dp
dz
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where µ  is the dynamic viscosity of the fluid and  A  and  B  are constants of 
integration.    [5] 

(c) Find an expression for  B  in terms of iR  and oR .  [5] 

(d) Hence find an expression for the viscous force per unit length exerted by the fluid 
on the inner surface of the duct,  iRr = , in terms of iR , oR  and dzdp . [5] 
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5  Consider the incompressible flow through a pipe expansion as shown in Fig. 1. 
The upstream radius is  R1  and the downstream radius is  R2 . The flow is steady-on-
average, the turbulence is restricted to the region immediately downstream of the 
expansion, and the flow well upstream and downstream of the expansion may be 
considered as uniform, with speeds V1 and V2 respectively. To a reasonable 
approximation, the pressure on the back face of the expansion may be taken as equal to 
the upstream pressure,  p1 , as indicated in Fig. 1.  

(a) Using the control volume shown in Fig. 1, show that the pressure rise across the 
expansion is 

    ( )21212 VVVpp −=− ρ  . 

You may neglect viscous stresses acting on the control volume. [9] 

(b) Show that the loss of mechanical energy  Δe  per unit volume of fluid flowing 
through the expansion is 

    ( )2212
1 VVe −=Δ ρ  . [8] 

(c)  A sphere is mounted on the centreline of the pipe just downstream of the 
expansion. It is held in place by wires which are attached to the pipe wall. The net drag 
force on the sphere and wires is  Fd . The turbulence in the wake of the sphere enhances 
the rate of dissipation of mechanical energy. Taking this into account, derive a new 
expression for the mechanical energy loss per unit volume of fluid passing through the 
expansion.    [8] 

 

    Fig. 1  
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6 An incompressible fluid rotates at an angular velocity  Ω  above a large, flat, 
stationary, horizontal plate.  A thin boundary layer of thickness  δ  is established 
adjacent to the plate. Outside the boundary layer the fluid is in a state of rigid body 
rotation with an azimuthal velocity of uθ =Ωr  in (r,θ, z)  coordinates. Within the 
boundary layer the azimuthal velocity drops from uθ =Ωr  at the top of the boundary 
layer,  z = δ , to 0=θu  at the surface of the plate,  z = 0 . 

(a) Outside the boundary layer the viscous forces can be neglected and the radial 
pressure gradient is given by  

    dp
dr

= ρ
uθ
2

r
 . 

Show, with the aid of a sketch, that this equation follows directly from Newton’s second 
law of motion. Derive an expression for the radial pressure distribution. [8] 

(b) Use dimensional analysis to show that the boundary layer thickness  δ  is of the 
order of 

    δ ~ ν Ω   

where  ν   is the kinematic viscosity of the fluid. [5] 

(c) The radial pressure distribution calculated in Part (a) is imposed on the fluid 
within the boundary layer. It is observed that, within the boundary layer, the fluid 
spirals radially inward with a radial velocity comparable to the azimuthal velocity,  
ur ~ uθ . Explain, with the aid of a sketch, why this radial inflow is driven by the 

imposed pressure gradient.  [6] 

(d) Outside the boundary layer it is observed that the fluid has a small but finite axial 
velocity, zu , which is independent of  r  and directed away from the surface of the plate. 
Using a cylindrical control volume of height  δ = ν Ω   and radius  r , show that  

    Ωδ~zu  . [6] 
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