
1) An arrangement that is somewhat counterintuitive but obeys all the usual rules for a
statically determinate structure.

For global equilibrium…

VB = 0

VA = F

HA = HB

Taking moments about A: HB = -F

Hence, HA = -F

The minus sign simply indicates that the direction is opposite to the arrows initially drawn. 

Point forces only, so expect linear bending moment diagram. Knowing boundary 
conditions (pin and vertical roller), and by equilibrium of free bodies, obtain the bending 
moment diagram shown. Bending moments drawn on the tension side.
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2)

For global equilibrium…

𝐻𝐻𝐴𝐴 = 𝐻𝐻𝐶𝐶
𝑉𝑉𝐴𝐴 + 𝑉𝑉𝑐𝑐 = 𝑤𝑤𝑤𝑤

Taking moments about A: 

𝑉𝑉𝑐𝑐 =
3𝑤𝑤𝑤𝑤

4
𝑉𝑉𝐴𝐴 =

𝑤𝑤𝑤𝑤
4

Taking moments for RHS about B:

𝑑𝑑𝐻𝐻 =
3𝑤𝑤𝑤𝑤2

4
−
𝑤𝑤𝑤𝑤2

2

𝐻𝐻 =
𝑤𝑤𝑤𝑤2

4𝑑𝑑
= 𝐻𝐻𝐶𝐶 = 𝐻𝐻𝐴𝐴

Or, since for AB reaction at A must 
pass through both pins:

𝐻𝐻𝐶𝐶 = 𝐻𝐻𝐴𝐴 = 𝑉𝑉𝐴𝐴
𝐿𝐿
𝑑𝑑

= 𝑤𝑤𝐿𝐿2

4𝑑𝑑 𝑉𝑉𝐶𝐶 =
3𝑤𝑤𝑤𝑤

4

𝐻𝐻𝐶𝐶

𝑉𝑉 =
𝑤𝑤𝑤𝑤
4

𝐻𝐻

Taking moments about cut at x = L/2 on RHS

𝑀𝑀𝑥𝑥=𝑙𝑙
2

= −𝑤𝑤𝐿𝐿2

4𝑑𝑑
𝑦𝑦 − 𝑤𝑤𝑤𝑤𝑥𝑥

4
+ 𝑤𝑤𝑥𝑥2

2
= −𝑤𝑤𝐿𝐿2

4𝑑𝑑
𝑦𝑦 − 𝑤𝑤𝑤𝑤2

8
+ 𝑤𝑤𝑤𝑤2

8
= −𝑤𝑤𝐿𝐿2

4𝑑𝑑
𝑦𝑦

Recalling that for this arch: 𝑦𝑦 = 𝑑𝑑 𝑥𝑥2

𝐿𝐿2

𝑀𝑀
𝑥𝑥=𝐿𝐿2

= −
𝑤𝑤𝑤𝑤2

4𝑑𝑑
𝑑𝑑
𝑥𝑥2

𝑤𝑤2
= −

𝑤𝑤𝑤𝑤2
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𝑦𝑦

Segment 1

Segment 2

𝐴𝐴1 = 4 × 80 = 320 𝑚𝑚𝑚𝑚2

𝐴𝐴2 = 2 × 4 × 80 − 4 = 608 𝑚𝑚𝑚𝑚2

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐴𝐴1 + 𝐴𝐴2 = 320 + 608 = 928 𝑚𝑚𝑚𝑚2

By first moments of area, measuring the lever arm 𝑦𝑦 from the base…

𝑦𝑦1 = 80 −
4
2

= 78 𝑚𝑚𝑚𝑚

𝑦𝑦2 =
80 − 4

2
= 38 𝑚𝑚𝑚𝑚

𝑦𝑦 =
𝐴𝐴1𝑦𝑦1 + 𝐴𝐴2 𝑦𝑦2

𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡

=
320 × 78 + 608 × 38

928
=

48064
928

= 51.8 𝑚𝑚𝑚𝑚

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐼𝐼1 + 𝐼𝐼2 + 𝐴𝐴1𝑦𝑦12 + 𝐴𝐴2𝑦𝑦22

=
80 × 43

12
+

8 × 763

12
+ 320 × 80 − 2 − 51.8 2 + 608 × 51.8 − 38 2

= 427 + 292 651 + 219 661 + 115 788

= 628 527 𝑚𝑚𝑚𝑚4
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4) a)

𝐼𝐼 =
𝜋𝜋
4
𝑟𝑟𝑡𝑡4 − 𝑟𝑟𝑖𝑖4 =

𝜋𝜋
4

404 − 324 = 1 187 070 𝑚𝑚𝑚𝑚4

Note that the databook simplification for thin-walled sections (𝐼𝐼 ≈ 𝜋𝜋𝑟𝑟3𝑡𝑡 = 1 172 593 𝑚𝑚𝑚𝑚) is 
sufficiently accurate here, provided the correct value of r is adopted, i.e., 𝑟𝑟 = 𝑟𝑟𝑡𝑡 −

𝑡𝑡
2

= 36 𝑚𝑚𝑚𝑚.

𝐸𝐸 = 15 × 103 𝑁𝑁𝑚𝑚𝑚𝑚−2

The horizontal member braces compression strut against compression strut at mid-height. At 
critical buckling load, neither can contribute to the buckling resistance of the other, i.e., this 
horizontal member provides no effective restraint against buckling. So, struts are pin ended with 
length 4.000 m…

𝑤𝑤 = 4000 𝑚𝑚𝑚𝑚

Hence, Euler buckling load:

𝑃𝑃𝐸𝐸 =
𝜋𝜋2𝐸𝐸𝐼𝐼
𝑤𝑤2

=
𝜋𝜋2 × 15 000 × 1 187 070

4 0002
= 10 984 𝑁𝑁

b) The Euler buckling load assumes an imperfection free strut. A bamboo culm is a grown material
which can be expected to exhibit a relatively high degree of imperfection compared to typical
engineered structures.
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5) a)

Probably quickest tackled graphically.

By polygon of forces, with applied load providing scale …

Reactions purely vertical.

𝑉𝑉𝐴𝐴 =
5
8

× 10 = 6.25 𝑘𝑘𝑁𝑁

𝑉𝑉𝐶𝐶 =
3
8

× 10 = 3.75 𝑘𝑘𝑁𝑁

𝑇𝑇𝐴𝐴𝐴𝐴 = −10.0 𝑘𝑘𝑁𝑁

𝑇𝑇𝐴𝐴𝐶𝐶 = −4.7 𝑘𝑘𝑁𝑁

𝑇𝑇𝐴𝐴𝐴𝐴 = 7.8 𝑘𝑘𝑁𝑁

𝑇𝑇𝐴𝐴𝐴𝐴 = 11.2 𝑘𝑘𝑁𝑁

𝑇𝑇𝐶𝐶𝐴𝐴 = 2.8 𝑘𝑘𝑁𝑁

CD

V C

AD

DC

V A

DA

10 kN

𝑉𝑉𝐴𝐴 𝑉𝑉𝐶𝐶

𝐻𝐻𝐴𝐴
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Alternatively, by calculation obtain the same result…

∠𝐴𝐴𝐴𝐴𝐴𝐴 = tan−1
4
5

= 38.66°

∠𝐴𝐴𝐶𝐶𝐴𝐴 = tan−1
4
3

= 53.13°

∠𝐶𝐶𝐴𝐴𝐴𝐴 = tan−1
3
4

+ tan−1
2
4

= 63.43°

∠𝐴𝐴𝐴𝐴𝐴𝐴 = tan−1
5
4
− tan−1

2
4

= 24.78°

∠𝐴𝐴𝐴𝐴𝐴𝐴 = 180 − 38.66 − 24.78 = 116.56°

∠𝐶𝐶𝐴𝐴𝐴𝐴 = 180 − 53.13 − 63.43 = 63.44°

Moments about A: 𝑉𝑉𝑐𝑐 = 3×10
8

= 3.75 𝑘𝑘𝑁𝑁

Vertical equilibrium: 𝑉𝑉𝐴𝐴 = 10 − 3.75 = 6.25 𝑘𝑘𝑁𝑁

Horizontal equilibrium: 𝐻𝐻𝐴𝐴 = 𝐻𝐻𝐶𝐶 = 0

Resolving vertically at A: 𝑇𝑇𝐴𝐴𝐵𝐵 = −6.25
cos 90−38.66

= −10.0 𝑘𝑘𝑁𝑁

Resolving horizontally at A: 𝑇𝑇𝐴𝐴𝐴𝐴 = 10 × cos 38.66 = 7.8 𝑘𝑘𝑁𝑁

Resolving vertically at C: 𝑇𝑇𝐵𝐵𝐶𝐶 = −3.75
cos 90−53.13

= −4.7 𝑘𝑘𝑁𝑁

Resolving horizontally at C: 𝑇𝑇𝐶𝐶𝐴𝐴 = 4.69 × cos 53.13 = 2.8 𝑘𝑘𝑁𝑁

Resolving vertically at D: 𝑇𝑇𝐵𝐵𝐴𝐴 = 10
cos 90−63.44

= 11. 2𝑘𝑘𝑁𝑁

𝑉𝑉𝐴𝐴 𝑉𝑉𝐶𝐶

𝐻𝐻𝐴𝐴
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b)

Bar lengths can be measured from a scale drawing or determined by calculation, e.g.:

𝐴𝐴𝐴𝐴 = 3.000 𝑚𝑚

𝐶𝐶𝐴𝐴 = 5.000 𝑚𝑚

𝐴𝐴𝐶𝐶 = 32 + 42 = 5.000 𝑚𝑚

𝐴𝐴𝐴𝐴 = 52 + 42 = 6.403 𝑚𝑚

BD= 22 + 42 = 4.472 𝑚𝑚

Using bar forces and length by either method, extensions may be determined knowing 
e=TL/EA where EA = 107 N as given in question.

Bar T
kN

Length
mm

e=TL/EA
mm

AD 7.8 3000 2.3

CD 2.8 5000 1.4

BC -4.7 5000 -2.4

AB -10.0 6403 -6.4

BD 11.2 4472 5.0
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Solving by displacement diagram…

Draw displacement diagram, initially assuming 
(incorrectly) that AD remains horizontal. Then apply 
rigid body rotation about A, such that C is level with A 
in the final diagram, as required by the boundary 
conditions (a pin and a vertical roller).

Obtaining a vertical deflection of 7.4 mm downward 
and a horizontal deflection of 2.2 mm leftward.

5 mm

o, a eAD

b

c

40.3 mm

6.403
8.000

× 40.3 = 32.3 𝑚𝑚𝑚𝑚

c

d

b

7 
.4

 m
m

2.2 mm

eDC

ϕ

3.000ϕ 8.000ϕ

ro
t CD

Note eBC is parallel to BC, not rotAB
because ABC does not form a right angle 
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Or, remembering that this is an exam and we are only asked for the displacement of b … hence, 
JMA’s much more efficient solution.

Obtaining a vertical deflection of 7.4 mm downward and a horizontal deflection of 2.2 mm
leftward.

5 mm

o, a eAD c

b

7 
.4

 m
m

2.2 mm

eDC
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Displacements can also be found by virtual work. 

∑𝐹𝐹∗𝑑𝑑 = ∑𝑇𝑇∗𝑒𝑒

We require real extensions and displacements so forces and tensions are virtual. Require 
vertical and horizontal components of displacement.

Virtual bar forces, vertical unit load downward at B:

Moments about A: 𝑉𝑉𝑐𝑐 = 5×1
8

= 0.625 𝑘𝑘𝑁𝑁

Vertical equilibrium: 𝑉𝑉𝐴𝐴 = 10 − 6.25 = 0.375 𝑘𝑘𝑁𝑁

Horizontal equilibrium: 𝐻𝐻𝐴𝐴 = 𝐻𝐻𝐶𝐶 = 0

Resolving vertically at A: 𝑇𝑇𝐴𝐴𝐵𝐵 = −0.375
cos 90−38.66

= −0.600 𝑘𝑘𝑁𝑁

Resolving horizontally at A: 𝑇𝑇𝐴𝐴𝐴𝐴 = 0.600 × cos 38.66 = 0.469 𝑘𝑘𝑁𝑁

Resolving vertically at C: 𝑇𝑇𝐵𝐵𝐶𝐶 = −0.625
cos 90−53.13

= −0.781 𝑘𝑘𝑁𝑁

Resolving horizontally at C: 𝑇𝑇𝐶𝐶𝐴𝐴 = 0.781 × cos 53.13 = 0. 469 𝑘𝑘𝑁𝑁

For equilibrium at D: 𝑇𝑇𝐵𝐵𝐴𝐴 = 0 𝑘𝑘𝑁𝑁

𝑉𝑉𝐴𝐴 𝑉𝑉𝐶𝐶

𝐻𝐻𝐴𝐴
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Virtual bar forces, horizontal unit load rightward at B:

Moments about A: 𝑉𝑉𝑐𝑐 = 4×1
8

= 0.500 𝑘𝑘𝑁𝑁

Vertical equilibrium: 𝑉𝑉𝐴𝐴 = −0.500 𝑘𝑘𝑁𝑁

Horizontal equilibrium: 𝐻𝐻𝐴𝐴 = −1.000 𝑘𝑘𝑁𝑁

Resolving vertically at A: 𝑇𝑇𝐴𝐴𝐵𝐵 = 0.500
cos 90−38.66

= 0.800 𝑘𝑘𝑁𝑁

Resolving horizontally at A: 𝑇𝑇𝐴𝐴𝐴𝐴 = 1.000 − 0.800 × cos 38.66 = 0. 375𝑘𝑘𝑁𝑁

Resolving vertically at C: 𝑇𝑇𝐵𝐵𝐶𝐶 = −0.500
cos 90−53.13

= −0.625 𝑘𝑘𝑁𝑁

Resolving horizontally at C: 𝑇𝑇𝐶𝐶𝐴𝐴 = 0.625 × cos 53.13 = 0.375 𝑘𝑘𝑁𝑁

For equilibrium at D: 𝑇𝑇𝐵𝐵𝐴𝐴 = 0 𝑘𝑘𝑁𝑁

𝑉𝑉𝐴𝐴 𝑉𝑉𝐶𝐶

𝐻𝐻𝐴𝐴
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Giving a vertical displacement of 7.4 mm downward and a horizontal displacement of 2.2 
mm leftward.

This method is entirely acceptable but probably slower than drawing a displacement 
diagram for those that are reasonably well practiced with graphical methods.

Bar Force T
kN

Length
mm

e=TL/EA
mm

Tv*
kN

eTv* Th*
kN

eTh*

AD 7.8 3000 2.3 0.469 1.079 0.375 0.863

CD 2.8 5000 1.4 0.469 0.657 0.375 0.525

BC -4.7 5000 -2.4 -0.781 1.874 -0.625 1.500

AB -10.0 6403 -6.4 -0.6 3.840 0.800 -5.120

BD 11.2 4472 5.0 0 0 0 0

Σ 7.4 -2.2
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a) 

b) Reducing P by 20% gives 𝑃𝑃 = 4
8
𝑤𝑤𝑤𝑤 which tells us that the shear becomes 4

16
𝑤𝑤𝑤𝑤 =

120 𝑘𝑘𝑁𝑁 at each end and at the interior support. This gives zero moment mid-span and 
maximum bending moments as for two simply supported spans of length 𝐿𝐿

2
:

M =
𝑤𝑤 𝑤𝑤

2
2

8
=

30 × 82

8
= 240 𝑘𝑘𝑁𝑁𝑚𝑚

I =
𝑏𝑏𝑑𝑑3

12
=

200 × 6003

12
= 3.6 × 109 𝑚𝑚𝑚𝑚4

𝜎𝜎 =
𝑀𝑀𝑦𝑦
𝐼𝐼

=
240 × 106 × 600

2
3.6 × 109

= 20 𝑁𝑁𝑚𝑚𝑚𝑚−2

20 𝑁𝑁𝑚𝑚𝑚𝑚−2 < 24𝑁𝑁𝑚𝑚𝑚𝑚−2 hence section is adequate. 

−
3

16
𝑤𝑤𝑤𝑤 = −90 𝑘𝑘𝑁𝑁

−
5

16
𝑤𝑤𝑤𝑤 = −150 𝑘𝑘𝑁𝑁

3
16

𝑤𝑤𝑤𝑤 = 90 𝑘𝑘𝑁𝑁
5

16
𝑤𝑤𝑤𝑤 = 150 𝑘𝑘𝑁𝑁

3 m 3 m

−135 𝑘𝑘𝑁𝑁𝑚𝑚

240 𝑘𝑘𝑁𝑁𝑚𝑚

−135 𝑘𝑘𝑁𝑁𝑚𝑚
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c)

Deflection when P = 300kN noted as zero in the question.

When P = 240 kN…

From databook

𝛿𝛿 =
5𝑤𝑤𝑤𝑤4

384𝐸𝐸𝐼𝐼
−
𝑃𝑃𝑤𝑤3

48𝐸𝐸𝐼𝐼

=
5 × 30 × 160004

384 × 11 × 103 × 3.6 × 109
−

240 × 103 × 160003

48 × 11 × 103 × 3.6 × 109
= 646 − 517 = 129 𝑚𝑚𝑚𝑚

This is a deflection of approximately span / 124.

This represents a midspan displacement of less than 1 in 100, associated with a 
substantial change in the bending moment distribution in the beam. If we consider the 
analogous situation of an indeterminate beam with an intermediate support, rather than 
a cable attached to a weight, we can see that relatively small deviations in the vertical 
position of that support (due to settlement, low stiffness, tolerances, etc) can have 
drastic implications for the design of a beam for bending.

Any other pertinent, thoughtful comments would be acceptable.
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SECTION B

1 (short)

(a) The curves represent:

A: ceramic - highest modulus, brittle failure

B: metal - modulus roughly half that of the ceramics, ductile response showing work
hardening then necking before ductile fracture

C: polymer - low modulus and strength, brittle failure

D: polymer - low modulus and strength, very high ductility (drawing)

(b) True stress > nominal stress, and true strain < nominal strain; hence true lies above
and to the left of nominal in tension (terminating at the onset of necking).

Compressive true stress-strain curve is identical in shape, but extends to larger strains (as
necking is avoided).

Page 2 of 10 (cont.
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(c) Ceramic in compression vs. tension:

Compressive strength ! tensile strength (roughly factor of 10)

The tensile strength is controlled by the growth of the “worst flaw (crack)”. The
compressive strength is controlled by “crushing”, with cracks propagating stably until
bands of material fail.

Page 3 of 10 (TURN OVER
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2 (short)

(a) Step strain response is a delta function for the stress, at the step location. Step stress
response is a linear increase of strain over time.

(b) (i) d

(ii) e

(iii) g

(iv) f

Page 4 of 10
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3 (short)

(a) In the unit cell of sodium chloride, there are four Cl ions (as these form an FCC
packing), and hence four Na ions (as the compound is NaCl). The mass of the unit cell is
therefore (

4 × 35.453 + 4 × 22.989
)
× 10−3

6.022 × 1023 = 38.819 × 10−26 kg

The volume of the NaCl unit cell is
(
0.564 × 10−9)3 = 17.94 × 10−29 m3. Hence the

theoretical density
38.819 × 10−26

17.94 × 10−29 ≈ 2160 kg/m3

(b) The length of the edge of the NaCl cell = diameter of Cl + diameter of Na. For
a Cl diameter of unity, the unit cell size is thus 1.69, and the diagonal of one face =√

2× 1.69 = 2.39. Ions only touch along this diagonal if its length is equal to 2 (i.e. twice
the Cl diameter). There are thus two equal gaps between Cl ions on the diagonal, equal to
0.39/2 = 0.195 times the diameter of the Cl.

Page 5 of 10 (TURN OVER
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4 (short)

(a) The plane strain condition indicates

!3 = "(!1 + !2). (1)

Substituting (1) into 3D Hooke’s law, we find

#1 =
1 − "2

$
!1 −

"(1 + ")
$

!2

#2 =
1 − "2

$
!2 −

"(1 + ")
$

!1.

Hence

C =

[
1−"2
$ − "(1+")$

− "(1+")$
1−"2
$

]

(b) For " = 0.5, we verify #1 + #2 = 0. Since #3 = 0 in plane strain,
∑
% #% = 0. This

indicates that the material is incompressible.

Page 6 of 10
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5 (long)

(a) Describe the following concepts used in fracture mechanics:

(i) & = '!
√
() describes the loading at the tip of a sharp crack. It depends

on the applied stress, and the specimen and crack geometry. It has dimensions
stress ×

√
length.

(ii) &*+ is a material property, it depends on the material, not on geometry. It is
the value of the stress intensity factor at a crack tip needed for a crack to propagate.

(iii) Fast fracture occurs when & ≥ &*+ .

(b) &*+ = '!max
√
() ⇒ 28 × 108 = ' × (260 × 106) ×

√
( × (1.2 × 10−3)

∴ ' ≈ 1.754

& = '!
√
() = 1.754 × (340 × 106) ×

√
( × (0.6 × 10−3) = 25.89 MPa m1/2

∴ & < &*+ thus no fracture.

(c) ,)

,-
= .Δ&/, where ) is the crack length, - is the number of fatigue cycles, Δ&

is the stress intensity factor range, . and / are constants. It describes steady state crack
propagation.

(i) &*+ = 95 MPa m1/2 = 95 MN m−3/2

!max = 225 MPa (tensile)
!min = 60 MPa (compressive)
)0 = 2.5 mm
. = 1.5 × 10−10 MN−/ m1+1.5/

/ = 2.5
' = 1
Critical crack length
&*+ = !max

√
()0 ⇒ 95 × 106 = (225 × 106) × √

()0
∴ )0 = 56.7 mm

-f=
∫ )0

)0

d)
.('Δ!√())/

=
1

.('Δ!√()/
∫ )0

)0
)−

/
2 d) =

1
.('Δ!√()/

[
)
(
1−/2

)
1 − /

2

])0
)0

∴ -f =
)

(
1−/2

)
0 − )

(
1−/2

)
0

.
(
1 − /

2
) (
'Δ!

√
(
)/

Hence for Δ! = 285 MPa, the fatigue life of the girder is
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-f =
)

(
1−/2

)
0 − )

(
1−/2

)
0

.
(
1 − /

2
) (
Δ!

√
(
)/ =

0.0567
(
1−2.5

2
)
− 0.0025

(
1−2.5

2
)

1.5 × 10−10 (1 − 2.5
2
) (

285
√
(
)2.5 ≈ 1.127 × 104 cycles

(ii) -f1 = 5 × 1.127 × 104 =
0.0567−0.25 − 0.0025−0.25

1.5 × 10−10(−0.25)
(
Δ!1

√
(
)2.5

Δ!2.5
1 =

0.0567−0.25 − 0.0025−0.25

1.5 × 10−10 × (−0.25) × 56350 × (1.25
∴ Δ!1 ≈ 150 MPa
The decrease in stress range is 285 − 150 = 135 MPa.

(iii) Use Miner’s rule to estimate cumulative damage.
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6 (long)

(a) (i) The shape factor for stiffness in bending of a beam section is defined as
12 = *

*ref
, where both the beam and the reference have the same cross-sectional area.

For a solid square of side 3, . = 32 and *ref =
34
12 = .2

12 , hence 12 = 12*
.2 . The shape

factor for strength in bending is defined as 10 =
*/4

(*/4)ref
, with (*/4)ref =

34
12

2
3 = .3/2

6 .

Hence, 10 =
6(*/4)
.3/2 .

(ii) We wish to minimise the mass 5 = 6.7. For the stiffness-limited design,
the functional constraint is 8 = 5974

384$* ≤ 8max. Substituting * = .212
12 (from the

previous question) and solving for the free variable . =
(

60974
3848max12$

)1/2
, we find

5 =
(

5976

328max

)1/2
× 1
:2

with :2 =
(12$)1/2

6

the material performance index for the stiffness-limited design. For the strength-
limited design, the functional constraint is !0 = 9724

8* ≤ !0 . Substituting

*/4 =
.3/210

6 (from the previous question) and solving for the free variable

. =
(

6972
810 !0

)2/3
, we find

5 =
(
99277

16

)1/3
× 1
:0

with :0 =
(10 !0 )2/3

6

the material performance index for the strength-limited design.

(iii) We obtain:

stiffness-limited strength-limited
Materials :2 rank :0 rank

Steel 14.9 3 66.1 2
Al alloy 22.5 1 61.1 3
Ti alloy 16.8 2 86.7 1

(b) (i) The design requirements are:

• Objective: minimise the mass 5

• Geometric constraints: 7 and ; specified, < ) ;
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• Functional constraints: maximum deflection (stiffness), does not fail
(strength)

• Free variables: choice of material, tube thickness <

(ii) Using * = (;3<, the stiffness-limited deflection reads

8 =
5974

384$* =
5974

384($;3<
≤ 8max ⇔ < ≥ 5974

384($;38max
= <2 ,

and the strength-limited deflection

!0 =
:04
*

=
972;

8(;3<
≤ !0 ⇔ < ≥ 972

8(;2!0
= <0 .

We obtain:

Materials <2 (mm) <0 (mm) limiting constraint
Steel 0.99 0.11 stiffness

Al alloy 2.96 0.50 stiffness
Ti alloy 2.07 0.14 stiffness

The value of < for the active constraint (the largest value for each material) is in bold.

(iii) The only relevant shape factor is 12. Using the result of (a.i) with the
expressions . = 2(;< and * = (;3<, we find

1tube
2 =

12*
.2 =

12(;3<

4(2;2<2
=

3;
(<

.

With this expression, the shape factor and mass 5 = 6.7 are:

Materials 1tube
2 5 (kg) rank

Steel 19.4 0.97 1
Al alloy 6.5 0.97 1
Ti alloy 9.2 1.17 2

We will need to consider other constraints (cost, environmental resistance) to decide
between steel and Al alloy.

END OF PAPER

Page 10 of 10

RMF_TS_4


	Crib Section A RMF_TS_3.pdf
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14

	P2A_TS_v3

