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Q1 Short 

The structure is a three-pin portal, hence statically determinate. No horizontal reaction is 
possible at C as BC is pinned both ends. So, by equilibrium: 

𝐻𝐻𝐶𝐶 = 𝐻𝐻𝐴𝐴 = 0 

𝑉𝑉𝐴𝐴 = 𝑉𝑉𝐶𝐶 =
𝐹𝐹
2

 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  =
𝐹𝐹
2

×
𝐿𝐿
2

=
𝐹𝐹𝐹𝐹
4

 

 

 

 

If zero moment at the fixed corner seems counterintuitive, consider the deflected shape… 
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Examiner’s comments… 

“A statically determinate 3-pin frame subject to a point load. Done well by most. A significant 
number drew an appropriately shaped bending moment diagram but calculated the wrong 
maximum value of moment. Some candidates did not recognise that the horizontal reactions 
must be zero and hence there must be no bending moments in the columns of the frame – 
meaning that the ‘beam’ acts as simply supported. Some candidates drew shear force diagrams 
even though these were not requested.” 
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Q2 Short 

The static friction angle between WA and the slope is equal to the angle of the slope, so there is 
no maximum weight for the block as it will never slide down the slope. We thus need to 
determine the minimum weight of WA required and the weight of WB. 

The system is statically determinate, so by equilibrium, we can quickly solve graphically: 

 

Or by calculation: 

1) 𝑊𝑊𝐵𝐵 = 1
2
𝑇𝑇1 + √3

2
𝑇𝑇2 

2) √3
2
𝑇𝑇1 = 1

2
𝑇𝑇2 ⇒ 𝑇𝑇1 = 1

√3
𝑇𝑇2 

Subbing 2) into 1): 𝑊𝑊𝐵𝐵 = 1
2
1
√3
𝑇𝑇2 + √3

2
𝑇𝑇2 ⟹ 𝑇𝑇2 = √3

2
𝑊𝑊𝐵𝐵 

 

Since the pulley is frictionless:  

𝑇𝑇2 = 𝑊𝑊𝐶𝐶 = √3
2
𝑊𝑊𝐵𝐵, hence 𝑇𝑇1 = 1

2
𝑊𝑊𝐵𝐵 

 

The coefficient of friction is the tangent of the friction angle: 𝜇𝜇𝑠𝑠 = tan𝜓𝜓𝑠𝑠 = tan 30 = √3
3

, the 

normal force N is √3
2
𝑊𝑊𝐴𝐴,and the component of the weight force parallel to the slope is  1

2
𝑊𝑊𝐴𝐴. 

 

So: 1
2
𝑊𝑊𝐴𝐴 + √3

3
√3
2
𝑊𝑊𝐴𝐴 = 𝑇𝑇1 = 1

√3
𝑇𝑇2 = 1

√3
√3
2
𝑊𝑊𝐵𝐵 ⟹ 𝑊𝑊𝐴𝐴 ≥

1
2
𝑊𝑊𝐵𝐵 
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Examiner’s comments… 

“A system of blocks in equilibrium, either suspended or in contact with slope. Many candidates 
correctly calculated the weights of one or other of the two blocks requested, but fewer correctly 
calculated both. In general candidates who used graphical methods had more success, mostly 
because it helped them understand the problem rather than just following equilibrium 
calculations. Some candidates produced reams of undirected equilibrium-like calculations 
without really getting anywhere.” 
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Q3 Short 

 

 

 

Horizontal distribution of material does not affect the second moment of area about the 
horizontal neutral axis. So, the inclined webs can be converted to equivalent vertical webs of the 
same height but with a commensurately increased thickness of 2.5 mm. 

 

 

The second moment area of the section is then most easily calculated as that of an equivalent 
box section: 

 

 

𝐼𝐼 =
200 × 1003

12
−

190 × 963

12
= 2.7 × 106 𝑚𝑚𝑚𝑚4 

 

One could also calculate from first principles or by parallel axis theorem, but this would almost 
certainly be slower and more error prone. 
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Examiner’s comments… 

“Second moment of area of a trapezoidal decking profile. Done well by most. A number of 
approaches and simplifications were in evidence. Some of these simplifications were excessive 
– for example a number of candidates treated the inclined segments as equivalent to a vertical 
segment of the same height, but without adjusting the equivalent thickness.” 
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Q4 Short 

 

 

Flexible cable so cannot sustain bending moments, statically determinate so solve by 
equilibrium. Taking moments about A: 

𝑉𝑉𝐵𝐵 =
�2 − 0

2 × 12� × �1
3 × 12�

12
= 4 𝑘𝑘𝑘𝑘 

And by vertical equilibrium: 𝑉𝑉𝐴𝐴 = 8 𝑘𝑘𝑘𝑘 

Since the cable cannot sustain bending moments, the inclination of the cable at the support 
gives the inclination of the support reaction, hence: 

𝐻𝐻𝐴𝐴 =
4

tan 14
= 16 𝑘𝑘𝑘𝑘 

 

So taking a cut in the cable at midspan, and taking moments about the cut, the sag is found as: 

 

𝑥𝑥 =
−1 − 0

2 × 6 × 6
3 + 4 × 6

16
= 1.125 𝑚𝑚 
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Examiner’s comments… 

“Deflection of a hanging cable subject to a triangularly distributed load. Done well by many, but 
a surprising number of candidates, having correctly calculated the supported reactions and 
made a plausible attempt at a free-body diagram, were unable to then calculate the correct sag. 
A few candidates did not recognise that a cable cannot sustain bending moments and were 
thus on the wrong track from the start.” 
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Q5 Long 

 

 

 

a) Statically determinate truss structure. By equilibrium and free-bodies (method of joints 
and/or sections), or graphically, we obtain column 2: 

 T L e [/EA] T* eT* [/EA] 
AB 2P L PL -1 -2PL 
AM 0 L 0 -1 0 
BC 0     
BD 2√2P     
BL -2P L -2PL -1 2PL 
BM 0 √2L 0 √2 0 
CD 0     
DE 0     
DF √2P     
DJ -P     
DK 2√2P     
DL -3P     
EF 0     
FG 0     
FH √2P     
FJ -2P     
GH 0     
HJ -P     
JK -2P     
KL -2P L -2PL -1 2PL 
LM -3P     
    ΣeT* 2PL/EA  

 

b) By virtual work. Considering the real forces (column 2) and member lengths (column 3), 
we obtain real extensions in column 4.  Applying a virtual horizontal load at K (the joint of 
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interest)) we obtain column 5. Summing the product of the real extensions and the 
virtual tensions we obtain the real deflection at the bottom of column 6. Alternatively, 
the solution can be obtained graphically by displacement diagram. 
 
Note that there is no need to spend time calculating extensions for members that have 
zero force due to the virtual load (which in this case is every bar above the level of joint 
K).  
  

c) Members DL and LM are most onerously loaded, and in compression. So check yielding: 
and buckling: 

3𝑃𝑃 = 𝜎𝜎𝑦𝑦𝐴𝐴 = 275 × 𝜋𝜋 ��
101.6

2

2

� − �
93.6

2

2

�� = 337 𝑘𝑘𝑘𝑘 

 

∴ 𝑃𝑃𝑦𝑦 =
337

3
= 112 𝑘𝑘𝑘𝑘 

 
and buckling: 

3𝑃𝑃 =
𝜋𝜋2𝐸𝐸𝐸𝐸
𝐿𝐿2

=
𝜋𝜋2 × 200 × 103 × 𝜋𝜋

4 ��
101.6

2
4
− 93.6

2
4
��

40002
= 180 𝑘𝑘𝑘𝑘 

 
∴ 𝑃𝑃𝑒𝑒 = 60 𝑘𝑘𝑘𝑘 

 

𝑃𝑃𝑒𝑒 < 𝑃𝑃𝑦𝑦, so buckling of members DL and LM at 60 kN govern. 

  

Examiner’s comments… 

“A truss cantilever of sorts, subject to a point load. 

a) Done well by most candidates, with most or all forces correctly identified. 

b) Done well by many candidates – most often by virtual work, but with a number of graphical 
solutions also in evidence. A number of candidates did not recognise that the virtual horizontal 
force at the node in question would only lead to forces in the lower portion of the structure. 

c) Well done by some. The need to check buckling was missed by many. A surprising number of 
candidates endeavoured to calculate the bending resistance of the cross section, despite the 
forces in a pin jointed truss being axial. Some did not consider the fact that the value of P 
applied to the structure leads to forces greater than P in many of the members.”  
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Q6 Long 

a) Statically determinate so solvable by equilibrium. Determine support reactions and then 
take free bodies as needed. 
  

 

b) By superposition of databook cases, considering the effects of: the anti-clockwise 
rotation at B due to the point load; the clockwise rotation of B due to the distributed 
load, and the bending of BC due to the distributed load: 
 

 
 

𝛿𝛿𝐶𝐶 = −𝛿𝛿1 + 𝛿𝛿2 + 𝛿𝛿3 = −�
𝑊𝑊(2𝐿𝐿)2

16𝐸𝐸𝐸𝐸
× 𝐿𝐿� + �

�𝑊𝑊𝑊𝑊
2 �2𝐿𝐿
3𝐸𝐸𝐸𝐸

× 𝐿𝐿� + �
𝑊𝑊𝐿𝐿3

8𝐸𝐸𝐸𝐸
� =

5𝑊𝑊𝐿𝐿3

24𝐸𝐸𝐸𝐸
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
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c) The introduction of a roller support at C renders the structure one degree indeterminate. 
The problem cannot be solved purely by equilibrium. However, we have one additional 
useful piece of information – that the roller at C prevents the vertical deflection of C. 
This means that deflection at C must be zero and, hence, that the reaction RC required 
for compatibility must be exactly that needed to deflect the original determinate 
structure upward at C by the same magnitude that the original external loads caused it 
to deflect downward.  
 

 
 
 

𝛿𝛿𝑅𝑅𝑅𝑅 = −𝛿𝛿1 + 𝛿𝛿2 = �
(𝑅𝑅𝐶𝐶𝐿𝐿)2𝐿𝐿

3𝐸𝐸𝐸𝐸
× 𝐿𝐿� + �

𝑅𝑅𝐶𝐶𝐿𝐿3

3𝐸𝐸𝐸𝐸
� =

𝑅𝑅𝐶𝐶𝐿𝐿3

𝐸𝐸𝐸𝐸
= 𝛿𝛿𝐶𝐶 =

5𝑊𝑊𝐿𝐿3

24𝐸𝐸𝐸𝐸
 

 

∴ 𝑅𝑅𝐶𝐶 =
5𝑊𝑊

24𝐸𝐸𝐸𝐸
 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

 

Examiner’s comments… 

“An L-shaped elastic beam subject to a point load and a distributed load. 

a) Although some did this well, many did not. Many candidates do not appear to be comfortable 
finding reactions and then drawing shear and moment diagrams for a relatively simple 
determinate structure. 

b) Most candidates recognised the need to superimpose databook cases to determine the 
deflection – but most did so unsuccessfully. Typically, only two cases were considered instead 
of the required three.  

c) Most candidates recognised the need to use compatibility to find the reaction force in the 
newly indeterminate structure – although most again did not use the correct superposition of 
cases. Some candidates attempted to solve purely by equilibrium – which is sadly not possible.” 



1P2 Materials 2024 Crib

Question7

(a)

Let Ef and Em be the Young’s modulus of glass and polypropylene. Further let Vf be
the volume fraction of the glass. (i) For Long parrallel fibres, the Young’s modulus of the
composites Ec is given by:

Ec = VfEf +
(
1− Vf

)
Em

where Vf = 0.10, Ef = 70 GPa, and Em = 1 GPa. Substituting,

Ec = 0.10× 70 + 0.90× 1 = 7.9 GPa.

(ii) Small particles:
1

Ec

= Vf
1

Ef

+
(
1− Vf

) 1

Em

.

Substituting the same parameters,

1

Ec

= 0.10× 1

70
+ 0.90× 1

1
= 0.0014286 + 0.90 = 0.9014286 GPa

which gives
Ec ≈ 1.11 GPa.

b

The axial strain is of the element is
ϵ1 =

σ

E
,

and the lateral strains are
ϵ2 = ϵ3 = − ν

σ

E
.

For small strains, the volumetric strain (dilatation) ∆ is the sum of these normal strains:

∆ = ϵ1 + ϵ2 + ϵ3 =
σ

E
− 2 ν

σ

E
=

σ

E

(
1− 2ν

)
.

The volume is conserved if ∆ = 0, which implies

1− 2ν = 0 =⇒ ν =
1

2
.

1



Question 8

(a)

The main mechanisms are

1. Grain Boundary Strengthening

2. Solid Solution Strengthening

3. Work Hardening

4. Precipitation Strengthening

(b)

(i)
If each dislocation extends through the entire cube length L, then the total dislocation length
in the sample is

Total Length = ρ× L3.

Annealed Sample

Total Lengthannealed = 105 × 103 = 108mm.

Cold-Worked (Hard) Sample

Total Lengthcold-worked = 109 × 103 = 1012mm.

(ii)
For a square array of dislocations, the spacing d is approximately

d =
1
√
ρ
.

Hence, for ρcold-worked = 109mm−2:

d =
1√
109

= 10−4.5mm = 3.16× 10−5mm ≈ 31.6 nm.

(iii)
The flow stress contribution from dislocations is

σρ ∝ Gb
√
ρ,

where G is the shear modulus and b is the Burgers vector. Since σρ scales with
√
ρ, the ratio

of the cold-worked sample to the annealed sample is

σρcold-worked

σρannealed

=

√
ρcold-worked
ρannealed

=

√
109

105
=

√
104 = 100.

Thus, the dislocation contribution to strength in the cold-worked sample is approximately
100 times that of the annealed sample.

2



1P2 Materials - Solutions  
 
Q9 (short) 
 
(a)  Mass of one C2H4 molecule: 
𝑚 = (2 × 12.01 + 4 × 1.008) × 10−3/(6.022 × 1023) = 4.658 × 10−26    kg 
where 𝑁𝐴 = 6.022 × 1023  atoms / mol 
 
There are two complete C2H4 molecules per unit cell, as sketched. The mass of each 
unit cell is therefore 2𝑚. 
 
The volume of the unit cell is: 
𝑉 = (0.74 × 10−9)(0.49 × 10−9)(0.25 × 10−9) = 9.065 × 10−29  m3 
 
The density is:   𝜌 = 2𝑚/𝑉 = 1028  kg m-3            [4] 
 
This value will be an upper bound for practical polyethylene, as it assumes an idealised 
fully crystalline structure, with all molecular chains fully aligned. In practice the 
material will be semi-crystalline, with amorphous regions reducing the average density. 
 
(b)  (i) Semi-crystalline thermoplastic:   Would be most likely used above its glass 
transition temperature. A degree of crystallinity would mean the polymer is glassy and 
brittle below Tg, but would retain a reasonable modulus above Tg.     [2] 
 
(ii) Amorphous thermoplastic:  Would be most likely used below its glass transition 
temperature. The modulus drops rapidly above Tg for amorphous polymers, tending 
towards viscous flow.   [2] 
 
(iii) Natural rubber:  Would be most likely used above its glass transition temperature. 
Rubber relies on cross linking rather than van der Waals bonds to provide the rubbery 
elastic behaviour. Below Tg the material would be glassy and stiff.   [2] 
 
  



Q10 (short) 
 
(a)  Let  

• the container masses (kg) be 𝑚𝐴𝑙 and 𝑚𝑃𝐸𝑇    
• the recycled fractions be 𝑓𝐴𝑙  and 𝑓𝑃𝐸𝑇  
• the embodied energies (MJ/kg) be 𝐸𝐴𝑙  and 𝐸𝑃𝐸𝑇    
• the container volumes (m3) be 𝑉𝐴𝑙 and 𝑉𝑃𝐸𝑇   

 
(i) Embodied energy per unit volume contained if containers use only virgin material. 
PET bottle:   𝑊𝑃𝐸𝑇 = 𝑚𝑃𝐸𝑇𝐸𝑃𝐸𝑇,𝑉/𝑉𝑃𝐸𝑇 = (30 × 10−3)(84 × 103)/500 = 5.04 kJ / ml 
Aluminium can: 𝑊𝐴𝑙 = 𝑚𝐴𝑙𝐸𝐴𝑙,𝑉/𝑉𝐴𝑙 = (12 × 10−3)(200 × 103)/330 = 8.00 kJ / ml     [2] 
 
(ii)  PET bottle contains 30% recycled polymer.  Embodied energy per unit volume 

contained: 

𝑊𝑃𝐸𝑇 =
𝑚𝑃𝐸𝑇

𝑉𝑃𝐸𝑇
[(1 − 𝑓𝑃𝐸𝑇)𝐸𝑃𝐸𝑇,𝑉 +  𝑓𝑃𝐸𝑇𝐸𝑃𝐸𝑇,𝑅 ] 

= (30 × 10−3)(0.7 × 84 × 103 + 0.3 × 39 × 103)/500 = 4.23 kJ / ml 
Break even fraction of recycled aluminium: 

𝑊𝑃𝐸𝑇 =
𝑚𝐴𝑙

𝑉𝐴𝑙
[(1 − 𝑓𝐴𝑙)𝐸𝐴𝑙,𝑉 +   𝑓𝐴𝑙𝐸𝐴𝑙,𝑅 ] 

∴  𝑓𝐴𝑙 =
𝑊𝑃𝐸𝑇 (

𝑉𝐴𝑙

𝑚𝐴𝑙
) − 𝐸𝐴𝑙,𝑉

𝐸𝐴𝑙,𝑅 − 𝐸𝐴𝑙,𝑉
=

4.23 (
300

12 × 10−3) − (200 × 103)

(25 × 103) − (200 × 103)
= 0.539       [4] 

 
(b) Possible strategies to reduce the embodied energy of the aluminium alloy cans, per 
unit volume of water contained (any two):      
 

• Increase the volume of the cans, e.g. to 500 ml, to reduce the amount of 
aluminium needed per unit volume of water contained. For efficient 
manufacturability, this would have to be a standard size and shape of can, which 
will have established processing routes and supply chains. 

• Increase the volume fraction of recycled Al. This has a major impact due to the 
large differences between the embodied energies of virgin and recycled 
aluminium. Challenges include the impacts of contamination on the alloy 
properties and processability, and availability of suitable material through the 
material recycling supply chains.  

• Reduce the thickness of the Al cans. Technical challenges include ensuring 
sufficient strength of the alloy to avoid failure in service (e.g. due to internal 
pressure of a sparkling drink, transport and handling loads), and processing 
challenges of forming very thin walled cans.     

[2] + [2] 
 
 
  



Q12 (long) 
 
(a) (i)   Objective, maximise:    𝑄̇ = (𝑇 − 𝑇0)2𝜋𝜆

𝐷

𝑡
 

 Constraint:  𝜎ℎ =
𝑝𝐷

2𝑡
≤ 𝜎𝑦  

  Eliminate the free variable 𝑡 from the objective using the constraint: 
  𝑄̇ =

1

𝑝
(𝑇 − 𝑇0)4𝜋𝜆𝜎𝑦  

 Performance index to maximise:   𝑀 = 𝜆𝜎𝑦            [3] 
 
 Evaluate the performance index for each material: 

• Cu alloy:   𝜆𝜎𝑦 = 64.4 × 109 Pa W m-1 K-1 
• St steel:   𝜆𝜎𝑦 = 11.0 × 109 Pa W m-1 K-1 
• Al alloy:   𝜆𝜎𝑦 = 48.0 × 109 Pa W m-1 K-1 
 

 So, Cu alloy is the best choice.  [2] 
 
 Required wall thickness, given by constraint:    𝑡 ≥

𝑝𝐷

2𝜎𝑦
=0.163 mm   [1] 

 
(ii) Self weight:   𝜔 = 𝜋𝐷𝑡𝜌𝑔   N/m 
 Second moment of area:  𝐼 = 𝜋𝐷3𝑡/8 

Mid-span deflection (structures data book): 

 𝛿 =
5𝜔𝐿4

384𝐸𝐼
=

40

384

𝑔𝐿4

𝐷2 

𝜌

𝐸
       [3] 

 
Evaluate this for each material 
• Cu alloy:   𝛿 = 1.65 mm    fails 
• St steel:   𝛿 = 1.03 mm   passes 
• Al alloy:   𝛿 = 0.942 mm  passes 

 
Constraint 2 eliminates Cu alloy, so Al alloy is now the best choice (best 
performance index).  [2] 
 
Required wall thickness is now:    𝑡 ≥

𝑝𝐷

2𝜎𝑦
=0.125 mm 

 

Reduction in heat transfer:    𝑄̇𝐴𝑙

𝑄̇𝐶𝑢
=

𝜆𝐴𝑙

𝜆𝐶𝑢 

𝑡𝐶𝑢

𝑡𝐴𝑙
= 0.75                     [3] 

 
(iii) Other constraints to consider (any two): 

• Fracture toughness:  A lower toughness may require a larger pipe wall thickness, 
to reduce risk of fast fracture, or fatigue crack growth. This would reduce the pipe 
performance. 

• Oxidation and corrosion resistance:  May restrict alloy choice, dependent on the 
nature of the high temperature gasses in the pipe, which could affect thermal 
performance.  

• Manufacturability:  Very small wall thickness are required, so material needs 
enough ductility to be able to be shaped into a very thin walled tube.  Could 
restrict alloy choice, or require an increase in tube wall thickness.  

[2] + [2] 

Question 11



 
(b)   
 
(i)  For the case 𝑃 > 0, 𝑇 = 𝑇0 : 
 

Stresses in the pipe are due to the pressure alone: 
 𝜎ℎ𝑝 =

𝑝𝑅

𝑡
           𝜎𝑙𝑝 = 0    (given) 

No thermal strains. The total strain is therefore the elastic strain in the pipe wall: 
 𝜀ℎ𝑝

𝑒 =
𝑝𝑅

𝐸𝑝𝑡
           𝜀𝑙𝑝

𝑒 = −𝜈𝑝
𝑝𝑅

𝐸𝑝𝑡
            

 Because the coating is thin, the total (elastic) strain in the coating has to match: 
  ∴ 𝜀ℎ𝑐

𝑒 = 𝜀ℎ𝑝
𝑒 =

𝑝𝑅

𝐸𝑝𝑡
  𝜀𝑙𝑐

𝑒 = 𝜀𝑙𝑝
𝑒 = −𝜈𝑝

𝑝𝑅

𝐸𝑝𝑡
            [4] 

 
(ii) For the case 𝑃 > 0, 𝑇 > 𝑇0 : 
 

Total strains are now a superposition of elastic strains and thermal strains. The 
elastic strains in the pipe are as above (the stresses in the pipe wall are the 
same).  The total strains are therefore: 

𝜀ℎ𝑝
𝑡𝑜𝑡 =

𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0)           𝜀𝑙𝑝

𝑡𝑜𝑡 = −𝜈𝑝
𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0)             

 Because the coating is thin, the total strain in the coating has to match this: 
𝜀ℎ𝑐

𝑡𝑜𝑡 = 𝜀ℎ𝑝
𝑡𝑜𝑡 =

𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0)           𝜀𝑙𝑐

𝑡𝑜𝑡 = 𝜀𝑙𝑝
𝑡𝑜𝑡 = −𝜈𝑝

𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0)             

The elastic strain in the coating is the total strain minus the thermal strain in the 
coating: 

𝜀ℎ𝑐
𝑒 = 𝜀ℎ𝑐

𝑡𝑜𝑡 − 𝜀ℎ𝑐
𝑡ℎ =

𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0) − 𝛼𝑐(𝑇 − 𝑇0)            

𝜀𝑙𝑐
𝑒 = 𝜀𝑙𝑐

𝑡𝑜𝑡 − 𝜀𝑙𝑐
𝑡ℎ = −𝜈𝑝

𝑝𝑅

𝐸𝑝𝑡
+ 𝛼𝑝(𝑇 − 𝑇0) − 𝛼𝑐(𝑇 − 𝑇0)            

The hoop stress in the coating can be calculated from the elastic strains 
(Structures data book): 

𝜎ℎ𝑐 =
𝐸𝑐

1 − 𝜈𝑐
2

(𝜀ℎ𝑐
𝑒 + 𝜈𝑐𝜀𝑙𝑐

𝑒 ) 

 Substitute for the elastic strains: 

𝜎ℎ𝑐 =
𝐸𝑐

1 − 𝜈𝑐
2

[
𝑝𝑅

𝐸𝑝𝑡
(1 − 𝜈𝑐𝜈𝑝) + 𝛼𝑝(𝑇 − 𝑇0)(1 + 𝜈𝑐) − 𝛼𝑐(𝑇 − 𝑇0)(1 + 𝜈𝑐)] 

 
            [8] 
 



Q11  

(a) For most engineering alloys, a plot of the logarithm of crack growth per cycle  versus the 

logarithm of the stress intensity factor range  exhibits a sigmoidal shape as shown in the figure 

below.  Three distinct regions, labelled I, II, and III are identified. 

Region I – Crack Initiation:  Crack growth per cycle is zero below a threshold cyclic stress intensity 

factor range .  

Region II - Steady- State Crack Propagation described by the Paris law: 

 

where  A  and  n  are constants – see figure below.  

Region III – Fast Fracture: At high   , crack growth rate increases rapidly. As   approaches 

, fast fracture occurs. 

 

 

  da / dN

 K

 
Kth

  

da

dN
= A K n

 K
  
Kmax

 
KIC
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Question11

(b)

(i)
The hoop stress σ is

σ =
pR

t
==

(4.1MPa)× (4m)

0.04m
= 410MPa.

The critical crack size for fast fracture can be computed as

KIC = σ
√
π ccrit =⇒ ccrit =

1

π

(
KIC

σ

)2

.

Substitute σ = 410MPa, KIC = 200MPa
√
m:

KIC

σ
=

200

410
≈ 0.4878, (0.4878)2 ≈ 0.238, ccrit ≈

0.238

π
≈ 0.0758m = 75.8mm.

Since ccrit > t, the crack will penetrate through the wall (causing a leak) before it reaches
the critical size needed for fast fracture. Therefore te vessel will fail by leaking.

(ii)

The vessel experiences 2000 pressurization cycles, during which the crack grows from an
initial size ci to the through-wall size cf = t = 0.04m. We use the Paris law:

dc

dN
= A (∆K)n, ∆K = ∆σ

√
π c.

Given:
n = 4, A = 2.44× 10−14MPa−4m−1, ∆σ ≈ σmax = 410MPa.

Step A: Express Paris law in terms of c:

∆K = ∆σ
√
π c =⇒ (∆K)4 = (∆σ)4(π c)2.

Thus:
dc

dN
= A (∆σ)4 (π c)2 = A (410)4 π2 c2.

Define

B = A (410)4 π2 =⇒ dc

dN
= B c2.

3



Step B: Integrate from ci to cf over 2000 cycles:∫ cf

ci

dc

c2
=

∫ 2000

0

B dN.

Left side: ∫ cf

ci

dc

c2
=

[
−1

c

]cf
ci

=
1

ci
− 1

cf
.

Right side: ∫ 2000

0

B dN = 2000B.

Hence
1

ci
− 1

cf
= 2000B =⇒ 1

ci
=

1

cf
+ 2000B.

Step C: Compute B and solve for ci.

(410)4 ≈ 2.83× 1010, π2 ≈ 9.8696, A = 2.44× 10−14.

So
B ≈ 2.44× 10−14 × 2.83× 1010 × 9.8696 ≈ 0.0068m−1 cycle−1.

Then
2000B ≈ 13.6.

Using cf = 0.04m:

1

ci
=

1

0.04
+ 13.6 = 25 + 13.6 = 38.6 =⇒ ci =

1

38.6
≈ 0.0259m = 25.9mm.

ci ≈ 26mm.

Any initial crack of this size will reach the full 40mm thickness in 2000 cycles.

(iii)

We perform a single high-pressure test so that a crack of length ci reaches KIC. Any crack
longer than ci fails in the test.

KIC = σproof

√
π ci, σproof =

pproof R

t
.

Hence:

pproof =
KIC t

R
√
π ci

.

Substitute:

KIC = 200MPa
√
m, t = 0.04m, R = 4m, ci ≈ 0.026m.

4



Inside the root: π × 0.026 ≈ 0.0817,
√
0.0817 ≈ 0.286. Then

pproof ≈
(200× 0.04)MPa

√
m

4 × 0.286
≈ 8MPa

√
m

1.144
≈ 7.0MPa.

pproof ≈ 7.0MPa.

5
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