1P2 Crib Section A 2025 RMF41

Q1 Short

The structure is a three-pin portal, hence statically determinate. No horizontal reaction is
possible at C as BC is pinned both ends. So, by equilibrium:

HC=HA=O
F
VA=VC=E
F L FL
Mmar =323 %

A c

Vil Vil
‘(— L2 # L2 »‘

If zero moment at the fixed corner seems counterintuitive, consider the deflected shape...

[
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Examiner’s comments...

“A statically determinate 3-pin frame subject to a point load. Done well by most. A significant
number drew an appropriately shaped bending moment diagram but calculated the wrong
maximum value of moment. Some candidates did not recognise that the horizontal reactions
must be zero and hence there must be no bending moments in the columns of the frame —
meaning that the ‘beam’ acts as simply supported. Some candidates drew shear force diagrams
even though these were not requested.”
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Q2 Short

The static friction angle between WA and the slope is equal to the angle of the slope, so there is
no maximum weight for the block as it will never slide down the slope. We thus need to
determine the minimum weight of WA required and the weight of WB.

The system is statically determinate, so by equilibrium, we can quickly solve graphically:

Or by calculation:

1) WB =1T1 +ET2
2 2
V3 1 1
2) ?T1=ET2:>T1=\/_§T2
Subbing 2)into 1): Wy = 2\/—T2+\/_T2=>T2 _\/2_§WB

Since the pulley is frictionless:

T, = Wp = ‘/z—ng, hence Ty = - Wp

V3

The coefficient of friction is the tangent of the friction angle: ug = tanyg = tan 30 = <> the

normal force N is ‘/2—§WA,and the component of the weight force parallel to the slope is %WA.

V3v3
3 2

73

So0: W, + WA—T1=iT2—\/_2WB=>WA> Wy
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Examiner’s comments...

“A system of blocks in equilibrium, either suspended or in contact with slope. Many candidates
correctly calculated the weights of one or other of the two blocks requested, but fewer correctly
calculated both. In general candidates who used graphical methods had more success, mostly
because it helped them understand the problem rather than just following equilibrium
calculations. Some candidates produced reams of undirected equilibrium-like calculations
without really getting anywhere.”
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Q3 Short

50 75 100 75 100 75 100 75 50

Dimensions i mm.

Horizontal distribution of material does not affect the second moment of area about the
horizontal neutral axis. So, the inclined webs can be converted to equivalent vertical webs of the
same height but with a commensurately increased thickness of 2.5 mm.

100

The second moment area of the section is then most easily calculated as that of an equivalent
box section:

— |

T
100 Sl s
3
.

200

= 200 x 1003 190 x 963

= 2.7 x 10 mm*
2 1 2.7 X 10° mm

One could also calculate from first principles or by parallel axis theorem, but this would almost
certainly be slower and more error prone.
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Examiner’s comments...

“Second moment of area of a trapezoidal decking profile. Done well by most. A number of
approaches and simplifications were in evidence. Some of these simplifications were excessive
—for example a number of candidates treated the inclined segments as equivalent to a vertical
segment of the same height, but without adjusting the equivalent thickness.”
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Q4 Short
12 kN
4m
. /J/M
4 v
M AD
" 12m >!

Flexible cable so cannot sustain bending moments, statically determinate so solve by
equilibrium. Taking moments about A:

VB=(ZEOX121)2X(%X12)=4]€N

And by vertical equilibrium: V, = 8 kN

Since the cable cannot sustain bending moments, the inclination of the cable at the support
gives the inclination of the support reaction, hence:

4
H, = =16 kN
47 tan14

So taking a cut in the cable at midspan, and taking moments about the cut, the sag is found as:

2m 3KN

A —

—1;—0><6xg+4><6 :
=1.12
16 s

=
I
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Examiner’s comments...

“Deflection of a hanging cable subject to a triangularly distributed load. Done well by many, but
a surprising number of candidates, having correctly calculated the supported reactions and
made a plausible attempt at a free-body diagram, were unable to then calculate the correct sag.
A few candidates did not recognise that a cable cannot sustain bending moments and were
thus on the wrong track from the start.”
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Q5 Long

)

LL»LL»LL»‘

RMF41

LL»LL»‘«LJ

a) Statically determinate truss structure. By equilibrium and free-bodies (method of joints

and/or sections), or graphically, we obtain column 2:

T L e [/EA] T* eT* [/EA]
AB 2P L PL -1 -2PL
AM 0 L 0 -1 0
BC 0
BD 2V2P
BL 2P L -2PL 1 2PL
BM 0 \2L 0 \2 0
CD 0
DE 0
DF V2P
DJ -P
DK 2V2P
DL -3P
EF 0
FG 0
FH V2P
FJ 2P
GH 0
HJ -P
JK -2P
KL -2P L -2PL -1 2PL
LM -3P
TeT* 2PL/EA

b) By virtual work. Considering the real forces (column 2) and member lengths (column 3),
we obtain real extensions in column 4. Applying a virtual horizontal load at K (the joint of
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interest)) we obtain column 5. Summing the product of the real extensions and the
virtual tensions we obtain the real deflection at the bottom of column 6. Alternatively,
the solution can be obtained graphically by displacement diagram.

Note that there is no need to spend time calculating extensions for members that have
zero force due to the virtual load (which in this case is every bar above the level of joint

K).

Members DL and LM are most onerously loaded, and in compression. So check yielding:

and buckling:
101.6% 93.6°
3P =0y,A=275xm|(— - =337 kN
337
P, =—=112kN
3
and buckling:
5 s m|(101.6* 93.6*
agy 2% 200x10% X 4[<—2 -
3P =—7 = 10007 =180 kN
~ P, =60 kN

P, < P, so buckling of members DL and LM at 60 kN govern.

Examiner’s comments...

“A truss cantilever of sorts, subject to a point load.

a) Done well by most candidates, with most or all forces correctly identified.

b) Done well by many candidates — most often by virtual work, but with a number of graphical
solutions also in evidence. A number of candidates did not recognise that the virtual horizontal
force at the node in question would only lead to forces in the lower portion of the structure.

c) Well done by some. The need to check buckling was missed by many. A surprising number of
candidates endeavoured to calculate the bending resistance of the cross section, despite the
forces in a pin jointed truss being axial. Some did not consider the fact that the value of P
applied to the structure leads to forces greater than P in many of the members.”

10
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Q6 Long

a) Statically determinate so solvable by equilibrium. Determine support reactions and then
take free bodies as needed.

— §8>A A

L v
4
WL
T 4
3w
L 4
WL
2
-— B C B C
2
R S,
w
shear moment

b) By superposition of databook cases, considering the effects of: the anti-clockwise
rotation at B due to the point load; the clockwise rotation of B due to the distributed
load, and the bending of BC due to the distributed load:

6c=—61+6, +03=— downward

WL

W (2L)? (T) 2L L wL3 5WIL3
X —_— X =

16EI 3EI 8EI|  24EI

11
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c) Theintroduction of a roller support at C renders the structure one degree indeterminate.
The problem cannot be solved purely by equilibrium. However, we have one additional
useful piece of information — that the roller at C prevents the vertical deflection of C.
This means that deflection at C must be zero and, hence, that the reaction Rc required
for compatibility must be exactly that needed to deflect the original determinate
structure upward at C by the same magnitude that the original external loads caused it
to deflect downward.

L
L
S =5 15 = |BeD2L T RcL*| R SWIP
Re = F1 T2 3R] 3EI |~ EI ~ ¢ 24EI
R _oW d
¢ = 5aF] upwards

Examiner’s comments...
“An L-shaped elastic beam subject to a point load and a distributed load.

a) Although some did this well, many did not. Many candidates do not appear to be comfortable
finding reactions and then drawing shear and moment diagrams for a relatively simple
determinate structure.

b) Most candidates recognised the need to superimpose databook cases to determine the
deflection — but most did so unsuccessfully. Typically, only two cases were considered instead
of the required three.

c) Most candidates recognised the need to use compatibility to find the reaction force in the
newly indeterminate structure — although most again did not use the correct superposition of
cases. Some candidates attempted to solve purely by equilibrium — which is sadly not possible.”

12
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Question7

(a)
Let E; and E,, be the Young’s modulus of glass and polypropylene. Further let V; be
the volume fraction of the glass. (i) For Long parrallel fibres, the Young’s modulus of the
composites F, is given by:

E. = ViEy + (1— Vi) Ey

where V; = 0.10, E; = 70 GPa, and E,, = 1 GPa. Substituting,
E.=010x70 + 0.90 x 1 = 7.9 GPa.
(i) Small particles:

1 1 1
— = Vi = 1=V —.
E. f 7 + ( f) on
Substituting the same parameters,
1 1 1
= 0.10 x = + 0.90 x 1= 0.0014286 + 0.90 = 0.9014286 GPa

which gives
E. ~ 1.11 GPa.

b
The axial strain is of the element is -
€1 = E>
and the lateral strains are o
€g — €3 = —V E
For small strains, the volumetric strain (dilatation) A is the sum of these normal strains:
o o o
A = = o= =2 (1-2).
€1 + €2 + €3 E 14 E E ( I/)

The volume is conserved if A = 0, which implies

1
1-2v=0 = V=7



Question 8

(a)
The main mechanisms are

1. Grain Boundary Strengthening
2. Solid Solution Strengthening
3. Work Hardening

4. Precipitation Strengthening

(b)
(1)

If each dislocation extends through the entire cube length L, then the total dislocation length
in the sample is

Total Length = p x L3,

Annealed Sample

Total Length =10° x 10* = 10° mm.

annealed

Cold-Worked (Hard) Sample

Total Length 4= 107 x 10° = 10" mm.

cold-worke:

(i)

For a square array of dislocations, the spacing d is approximately

d:%.

Hence, for Pcold-worked = ]-09 mm_2:

1
V100

d= =10"*"mm = 3.16 x 107 mm =~ 31.6 nm.

(iii)

The flow stress contribution from dislocations is

o, o< Gb+/p,

where G is the shear modulus and b is the Burgers vector. Since o, scales with ,/p, the ratio
of the cold-worked sample to the annealed sample is

Opcold worked pCOld worked \/_ -
—— = V10" = 100.
0 pannealed Pannealed 10

Thus, the dislocation contribution to strength in the cold-worked sample is approximately
100 times that of the annealed sample.
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Q9 (short)

(a) Mass of one C,H, molecule:
m=(2x%x12.01 +4 x 1.008) x 1073/(6.022 x 10%3) = 4.658 X 10726 kg
where N, = 6.022 x 1023 atoms / mol

There are two complete C,H, molecules per unit cell, as sketched. The mass of each
unit cellis therefore 2m.

The volume of the unit cellis:
V =(0.74 x 1079)(0.49 x 10‘9)(0.25 x 107%) = 9.065 x 1072° m3

The densityis: p =2m/V = 1028 kg m? [4]

This value will be an upper bound for practical polyethylene, as it assumes an idealised
fully crystalline structure, with all molecular chains fully aligned. In practice the
material will be semi-crystalline, with amorphous regions reducing the average density.

(b) (i) Semi-crystalline thermoplastic: Would be most likely used above its glass
transition temperature. A degree of crystallinity would mean the polymer is glassy and
brittle below T, but would retain a reasonable modulus above Ts.  [2]

(if) Amorphous thermoplastic: Would be most likely used below its glass transition
temperature. The modulus drops rapidly above Tsfor amorphous polymers, tending
towards viscous flow. [2]

(iii) Natural rubber: Would be most likely used above its glass transition temperature.
Rubber relies on cross linking rather than van der Waals bonds to provide the rubbery
elastic behaviour. Below Ts the material would be glassy and stiff. [2]



Q10 (short)

(a) Let
e the container masses (kg) be my; and mpgr
e therecycled fractions be fy; and fper
e the embodied energies (MJ/kg) be E4; and Epgr
e the container volumes (m?) be Vy; and Vpgr

(i) Embodied energy per unit volume contained if containers use only virgin material.
PET bottle: Wpgr = MpprEpgry/Veer = (30 X 1073)(84 x 10%)/500 = 5.04 kJ / ml
Aluminium can: Wy = myEg y/Va = (12 x 1073)(200 x 10%)/330 = 8.00 kJ/ ml  [2]

(i) PET bottle contains 30% recycled polymer. Embodied energy per unit volume

contained:
MpgT

Wper = v [(1 - fPET)EPET,V + frerEperr ]
PET

= (30 x 1073)(0.7 x 84 x 103 + 0.3 x 39 x 103)/500 = 4.23 kJ/ ml
Break even fraction of recycled aluminium:

my,
Wper = E [(1 — falEay + faEar ]

Whper (,%ll) ~Euy 423 (%) — (200 x 10%)

Egyr —Enqy (25 x103) — (200 x 103)

= 0539 [4]

(b) Possible strategies to reduce the embodied energy of the aluminium alloy cans, per
unit volume of water contained (any two):

e Increase the volume of the cans, e.g. to 500 ml, to reduce the amount of
aluminium needed per unit volume of water contained. For efficient
manufacturability, this would have to be a standard size and shape of can, which
will have established processing routes and supply chains.

e Increase the volume fraction of recycled Al. This has a major impact due to the
large differences between the embodied energies of virgin and recycled
aluminium. Challenges include the impacts of contamination on the alloy
properties and processability, and availability of suitable material through the
material recycling supply chains.

e Reduce the thickness of the Al cans. Technical challenges include ensuring
sufficient strength of the alloy to avoid failure in service (e.g. due to internal
pressure of a sparkling drink, transport and handling loads), and processing
challenges of forming very thin walled cans.

[2] +[2]



Question 11

(a) (i) Objective, maximise: Q = (T — TO)Zn/’lg

. D
Constraint: g, = < ay
2t

Eliminate the free variable t from the objective using the constraint:
. 1
Q= ;(T — Ty)4mlo,

Performance index to maximise: M = Ag, [3]

Evaluate the performance index for each material:
e Cualloy: Ao, = 64.4 x 10° PaW m" K"
e Ststeel: Ag, =11.0 x 10° PaW m" K"
e Alalloy: Ag, = 48.0 x 10° PaW m~" K"

So, Cu alloy is the best choice. [2]

Required wall thickness, given by constraint: t > % =0.163 mm [1]
y

Self weight: w = nDtpg N/m
Second moment of area: I = nD3t/8

Mid-span deflection (structures data book):

5= 5wL* _ 40 g_L4£ 3]
384E] 384 D2 E

Evaluate this for each material

e Cualloy: 6§ = 1.65mm fails

e Ststeel: § =1.03 mm passes
e Alalloy: 6§ =0.942 mm passes

Constraint 2 eliminates Cu alloy, so Al alloy is now the best choice (best
performance index). [2]

Required wall thickness is now: t = % =0.125 mm
y

L ) Aqr t
Reduction in heat transfer: 4L = 24Lfcu _ ¢ 75 [3]
cu  Acu tar

(iii) Other constraints to consider (any two):

Fracture toughness: A lower toughness may require a larger pipe wall thickness,
to reduce risk of fast fracture, or fatigue crack growth. This would reduce the pipe
performance.
Oxidation and corrosion resistance: May restrict alloy choice, dependent on the
nature of the high temperature gasses in the pipe, which could affect thermal
performance.
Manufacturability: Very small wall thickness are required, so material needs
enough ductility to be able to be shaped into a very thin walled tube. Could
restrict alloy choice, or require an increase in tube wall thickness.

[2] +[2]



ForthecaseP >0, T =T,:

Stresses in the pipe are due to the pressure alone:

R .
Onp = pT g, =0 (given)
No thermal strains. The total strain is therefore the elastic strain in the pipe wall:
€ = PR e = —y PR
hp — Ept Ilp — pEp
Because the coating is thin, the total (elastic) strain in the coating has to match:
. e _ _ PR e _ e PR
.o ehC —_ ghp —_ g glC - glp Vp Ep [4]

ForthecaseP >0, T > T,:

Total strains are now a superposition of elastic strains and thermal strains. The
elastic strains in the pipe are as above (the stresses in the pipe wall are the
same). The total strains are therefore:

tot _ PR _ tot _ PR _
Ehp = Byt + a, (T —Ty) &p =V Byt + a, (T —Ty)
Because the coating is thin, the total strain in the coating has to match this:
tot _ _tot _ PR tot _ _tot _
Ehe = Epp = e —+ a, (T —Tp) g =g = vp Bt R+ a, (T —Tp)
The elastic strain in the coating is the total strain minus the thermal strain in the
coating:
R
Ehe = Enet — ehe = 1 + (T = To) — (T = T)
efe = el — el = —vp 5 22+ ay (T = To) — a (T — Ty)

The hoop stress in the coating can be calculated from the elastic strains
(Structures data book):

One = Ee (efc + VeELD)
hc — 1 — ch hc cclc
Substitute for the elastic strains:

C
1—v2

Ope = E : (1 vcvp) + a,(T—To)(A+ve) — ac(T —To)(1 +v,)

8]



Question 12

(a) For most engineering alloys, a plot of the logarithm of crack growth per cycle da/dN versus the
logarithm of the stress intensity factor range AK exhibits a sigmoidal shape as shown in the figure
below. Three distinct regions, labelled I, II, and III are identified.

Region I — Crack Initiation: Crack growth per cycle is zero below a threshold cyclic stress intensity

factor range AKy,.

Region II - Steady- State Crack Propagation described by the Paris law:

d—azAAKn
dN

where 4 and n are constants — see figure below.

Region III — Fast Fracture: At high AK | crack growth rate increases rapidly. As Kmax approaches

KIC , fast fracture occurs.

Wl 1 1 I |
Log—a : | _
dN | ' | Kipax=Kjc (fast fracture)

Crack growth : |

per cycle : '
: Paris law

- da _y Agn |

N i

: A o

logA ¢* : :

Threshold AKyy  Log AK



(b)
(i)
The hoop stress o is

> PR __ (4.1 MPa) x (4m) — 410 MPa.
t 0.04m

The critical crack size for fast fracture can be computed as

g

2
1/ Kic
KIC = O\/T Cerit == Cerit = ; <_ .

Substitute o = 410 MPa, Kjc = 200 MPay/m:

K 200 0.238
2e A 0.4878, (0.4878)2 ~~ 0.238, cCuip~—— ~0.0758m = 75.8 mm.
o 410 T

Since cqip > t, the crack will penetrate through the wall (causing a leak) before it reaches
the critical size needed for fast fracture. Therefore te vessel will fail by leaking.

(ii)
The vessel experiences 2000 pressurization cycles, during which the crack grows from an
initial size c; to the through-wall size ¢y =t = 0.04m. We use the Paris law:

de

N = A(AK)", AK =Aoymec.

Given:
n=4, A=244x107"MPa*m™!, Ao~ opux = 410 MPa.

Step A: Express Paris law in terms of c:

AK = Aoyre = (AK)* = (Ao)*(mc).

Thus: p
c
— —A(A 4 2:A 41 4 2 2.
o = A(Ao) (m ) = A(410)! n* e
Define d
B = A(410)* 72 % _Be
(410)* * = N Be



Step B: Integrate from c¢; to ¢; over 2000 cycles:

ey 2000
de _ / BdN.
0

2
Cji c

Left side: .
/ “f de B 7 1 1
Ci 62 - ¢ c; B G Cf‘
Right side:
2000
/ BdN = 2000 B.
0
Hence

1 1 1 1
— - — =2000B =— — = — +4+20008.
c;  Cy G Cy

Step C: Compute B and solve for c;.
(410)* ~ 2.83 x 10", 7%~ 9.8696, A =244 x 107

So
B~ 244 x 107" x 2.83 x 10'° x 9.8696 ~ 0.0068 m~* cycle™!.

Then
2000 B ~ 13.6.

Using ¢y = 0.04 m:

11 1
e 4 136=25+136=2386 —> ¢ =—— ~0.0259m = 25.9 mm.
o 004 + “ =386 m i

Any initial crack of this size will reach the full 40 mm thickness in 2000 cycles.
(iii)

We perform a single high-pressure test so that a crack of length ¢; reaches Kic. Any crack
longer than ¢; fails in the test.

Pproof 12
KIC = Oproof /T Ci, Oproof = %-
Hence:
. KIC t
Pproof = R \/7T_GL
Substitute:

Kic = 200MPay/m, ¢=0.04m, R=4m, ¢ ~ 0.026m.



Inside the root: 7 x 0.026 ~ 0.0817, +/0.0817 ~ 0.286. Then

(200 x 0.04) MPay/m _ 8 MPay/m

~ ~ 7.0 MPa.
1 % 0.236 1.144 7.0MPa

Pproof ~

Poroot ~ 7.0 MPa.
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