
Engineering Tripos Part IA FIRST YEAR

Paper 4: Mathematical Methods

Solutions to 2024 Sections B and C

9. Complex numbers
(a) We rearrange

s(z + 1) = 2(z − 1)

z(2− s) = s+ 2

z =
2 + s

2− s
=

1 + s/2

1− s/2 [3]

(b) We substitute s = ix into the inverse transform equation and compute the magnitude
as

|z| =
∣∣∣∣1 + ix/2

1− ix/2

∣∣∣∣ = |1 + ix/2|
|1− ix/2|

=

√
1 + x2/4√
1 + x2/4

= 1

Hence z is on the unit circle. [8]

(c)

s = 2
eiθ − 1

eiθ + 1
= 2

eiθ/2(eiθ/2 − e−iθ/2)

eiθ/2(eiθ/2 + e−iθ/2)

= 2
2i sin(θ/2)

2 cos(θ/2)
= 2i tan(θ/2)

The result is on the imaginary axis. [8]

(d) We solve

2

(
z − 1

z + 1

)
= 2z

z − 1 = z(z + 1)

z2 = −1

Expressing z as z = ρeiθ, this becomes

ρ2e2iθ = eiπ

which gives the solution ρ = 1 and

θ =
π

2
+ nπ

for any n. This gives two distinct doubling points: eiπ/2 = i and e−iπ/2 = −i. [5]

(e) Using the binomial expansion, we write

1 + s/2

1− s/2
= (1 + s/2)

(
1 + s/2 + s2/4 +O(s3)

)
= 1 + s+ s2/2 +O(s3)

which is identical to the power expansion of es up to and including the quadratic term. [6]
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10. Differential equations
(a) For f(t) = 0:

d2x

dt2
+ p

dx

dt
+ qx = 0

Auxiliary equation:

1

q
λ2 +

p

q
λ+ 1 = 0 ⇒ λ =

−p
q
±
√

(p
q
)2 − 41

q

21
q

(i) p2 − 4q > 0

Discriminant: (p
q
)2 − 41

q
> 0

Two real roots: λ1 and λ2 where λ1 ̸= λ2

x(t) = Aeλ1t +Beλ2t

(ii) p2 − 4q = 0

Discriminant: 0

Two identical roots: −p/2

x(t) = (At+B)e−pt/2

(iii) p2 − 4q < 0

No real roots, two complex roots: λ = α± iβ

x(t) = eαt(A cos βt+B sin βt) [10]

(b)
d2x

dt2
+ 4x = 2 sin t+ sin 2t

Homogeneous equation:

d2x

dt2
+ 4x = 0

Characteristic equation:

λ2 + 4 = 0 ⇒ λ = ±2i

General solution to homogeneous equation:

xh(t) = C1 cos 2t+ C2 sin 2t

Now to find a particular solution where f(t) = 2 sin t + sin 2t. Note that in this case,
sin 2t appears in both the right hand side and the complementary function. This can be
dealt with by multiplying through by t in our trial solution.

So, let’s guess xp(t) = α sin t+ β cos t+ t(γ sin 2t+ δ cos 2t)

Since the right hand side is odd, xp must be odd such that the differential operator also
produces an odd function.

Therefore, we need only try xp(t) = α sin t+ tδ cos 2t

dxp/dt = α cos t+ δ(cos 2t− 2t sin 2t)

d2xp/dt
2 = −α sin t− 4δ sin 2t− 4δt cos 2t

Substituting into the differential equation:
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−α sin t− 4δ sin 2t− 4δt cos 2t+ 4[α sin t+ tδ cos 2t] = 2 sin t+ sin 2t

Grouping terms:

[sin(t)] − α + 4α = 2 ⇒ α = 2/3

[sin(2t)] − 4δ = 1 ⇒ δ = −1/4

Therefore, xp(t) =
2
3
sin t− 1

4
t cos 2t

General solution is:

x(t) = xh(t) + xp(t) = C1 cos 2t+ C2 sin 2t+
2
3
sin t− 1

4
t cos 2t

x(0) = 0 ⇒ C1 = 0

dx
dt

∣∣∣
0
= 0 ⇒ 2C2 +

2
3
− 1

4
= 0 ⇒ C2 = − 5

24

x(t) = 2
3
sin t− 5

24
sin 2t− 1

4
t cos 2t [20]

11. Functions of two variables, contour plots, gradients
(a)

Contours for z = 0 are x+ 1 = 0, x+ 2y − 2 = 0 and 3x− 4y − 1 = 0. [8]

(b) The partial derivative with respect to y is best found directly from the factorized
expression, without multiplying out.

∂z

∂y
= (x+ 1) [(x+ 2y − 2)(−4) + (3x− 4y − 1)(2)]

= (x+ 1) [(−4x− 8y + 8) + (6x− 8y − 2)] = (x+ 1)(2x− 16y + 6)

= 2(x+ 1)(x− 8y + 3)

To find the partial derivative with respect to x, we first multiple out the factors

z = 3x3 + 2x2y − 4x2 − 8xy2 + 8xy − 5x− 8y2 + 6y + 2
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and then differentiate

∂z

∂x
= 9x2 + 8y + 4xy − 8y2 − 8x− 5 [6]

(c) ∂z
∂y

= 0 implies either x = −1 or x = 8y − 3. We take each of these possibilities in
turn and see when ∂z

∂x
= 0 as well.

x = −1 ⇒ ∂z
∂x

= 9 + 8y − 4y − 8y2 + 8− 5 = −4(2y − 3)(y + 1) = 0

⇒ y = −1, 3/2

So there are stationary points at (−1,−1) and (−1, 3/2).

x = 8y − 3 ⇒ ∂z
∂x

= 9(64y2 − 48y + 9) + 8y + 4(8y − 3)y − 8y2 − 8(8y − 3) − 5 =
100(6y2 − 5y + 1) = 100(3y − 1)(2y − 1) = 0 ⇒ y = 1/3, 1/2

So there are stationary points at (1, 1/2) and (−1/3, 1/3). By inspection of the contour
plot, the points (−1,−1), (−1, 3/2) and (1, 1/2) lie at the intersections of the z = 0 con-
tours and are therefore saddle points. The point (−1/3, 1/3) lies in a region of positive z
and is therefore a maximum. Note that the coordinates of the saddle points can be found
directly from the contour plot, with no need for differentiation. [8]

(d) Evaluating the gradient at the origin:

∇z
∣∣∣
(0,0)

= (−5, 6)

This vector points in the direction of steepest ascent. Therefore, the contour of constant
z passes through the origin at right angles to this, i.e. in the direction (6, 5) or (−6,−5). [4]

(e) Now we evaluate the gradient at (1, 1):

∇z
∣∣∣
(1,1)

= (0,−16)

The rate of change of z in the direction n is given by ∇z · n̂ = (0,−16) ·(−1,−1) /
√
2 =

16/
√
2 = 8

√
2. [4]

12. Laplace transforms
(a) The first differential equation is the differential equation that characterises a capacitor,
i.e. the current is proportional to the derivative of the voltage. The second differential
equation applies Kirchhoff’s loop rule, i.e. the sum of voltages over the components R,L
and C has to equal the source voltage V . For the inductance, the voltage is proportional
to the derivative of the current, whereas the resistor satisfies Ohm’s law where voltage is
proportional to current. The source voltage is effectively zero for negative times because
the switch is open, and only becomes V for times t ≥ 0, hence the Heaviside function
that multiplies V on the right of the equation. [2]

(b) We take the Laplace transforms of the equations to yield{
ī(s) = Csv̄(s)

Rī(s) + Ls̄i(s) + v̄(s) = V
s
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The first equation gives

v̄(s) =
ī(s)

Cs
and substituting into the second equation, we obtain

ī(s) =
V
s

R + Ls+ 1
Cs

=
CV

1 +RCs+ LCs2
=

V/L

s2 + R
L
s+ 1

LC
[6]

(c) For LC = 1 and RC = 2.5, we have R/L = RC
LC

= 2.5 and hence

ī(s) =
V/L

s2 + 5
2
s+ 1

=
V/L

(s+ 2)(s+ 1
2
)

=
2V

3L

(
1

s+ 1
2

− 1

s+ 2

)
Hence,

i(t) =
2V

3L
(e−t/2 − e−2t)

for t ≥ 0 and i(t) = 0 for t < 0. [7]

(d) We have

v̄(s) =
ī(s)

Cs
=

V

LC
· 1

s
(
s2 + R

L
s+ 1

LC

)
For RC = LC = 4/5, we obtain

v̄(s) =
5V

4
· 1

s
(
s2 + s+ 5

4

)
= V ·

(
1

s
− s+ 1

s2 + s+ 5
4

)
= V ·

(
1

s
− s+ 1(

s+ 1
2

)2
+ 1

)

= V ·

(
1

s
− s+ 1/2(

s+ 1
2

)2
+ 1

− 1/2(
s+ 1

2

)2
+ 1

)
Hence

v(t) = V

[
1− e−t/2

(
cos t+

1

2
sin t

)]
for t ≥ 0 and v(t) = 0 for t < 0. [8]

(e) For i(t) to take the form βte−at, its Laplace transform must be of the form

ī(s) =
β

(s+ a)2

For LC = 1, we know that

ī(s) =
V/L

s2 + R
L
s+ 1
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This expression becomes

ī(s) =
V/L

(s+ 1)2

when R
L

= RC
LC

= 2. So we need RC = 2, for which the current is i(t) = V
L
te−t and

hence β = V/L and a = 1. [7]
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