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a) 

 [5] 

 

b) 
Vph = 22 kV/√3 = 12.7 kV 
 
P = 3 V I cos φ => Iph = 250 MW / (3·12.7 kV · 0.8) = 8.2 kA 
 
sin² φ + cos² φ = 1 
 
cos φ = 0.8 => sin φ = 0.6 
 
XsI = 8.2 kA · 1 V/A = 8.2 kV 
 
XsI cos φ = 6562 V 
 
XsI sin φ = 4921 V 
 
=> E² = (Vph + XsI sin φ)² + (XsI cos φ)² = 3.54·108 V² 
 
=> E = 18.8 kV 
 
tan δ = XsI cos φ / (Vph + XsI sin φ) =>  δ = 18.1° 

 



c) 
Change in power factor achieved through change in rotor excitation. To have a leading 
power factor, the excitation has to be increased (so that the line practically does not 
“see” the winding reactance any more but the back-emf voltage over-compensates it and 
pushes reactive current into the line). 
 
Size of increase (now leading current): 
 
Voltage unchanged Vph = 22 kV/√3 = 12.7 kV 
 
Iph = 250 MW / (3·12.7 kV · 0.9) = 7.29 kA 
 
cos φ = 0.9 => sin φ = 0.4359 
 
XsI = 7.29 kA · 1 V/A = 7.29 kV 
 
Vph sin φ = 5.536 kV > XsI => triangle as follows: 
 
XsI – x = Vph sin φ = 5.536 kV 
 
Vph cos φ = y = 11.43 kV 
 
x² + y² = E² 
 
=> E² = (XsI – Vph sin φ)² + (Vph cos φ)² = 1.34·108 V² 
 
=> E = 11.56 kV 

d) 

50 MVar / (3·12.7 kV) = 1312 A (fully reactive) 
 
XsI = 1312 V 
 
Acting as a capacitor (compensating inductive load): E = Vph + XsI = 14 kV 
 

 
 
Acting as an inductor (compensating capacitive load): E = Vph – XsI = 11.4 kV 
 

 
  



SECTION B 
4 
a) 
 
Both the stator and rotor are wound with 3-phase windings. The current applied to the stator 
produces a rotating magnetic field, which induces currents in the rotor if the rotor is not at the 
same speed as the rotating stator field due to the changing flux linkage (similar to a transformer). 
The rotor currents then produce their own magnetic field. The rotor and stator magnetic fields 
interact to produce a torque. At synchronous speed, the rotor is spinning at the same frequency 
as the stator field, so the flux linkage remains constant, and there is no induced emf in the rotor 
coils, so there will be no rotor field, and no torque on the rotor. 

 
(b) 

 
 
R1: copper resistance in stator 
L1: stator stray inductance/reactance 
Rfe: equivalent iron-loss resistance 
L1m: magn. reactance 
L’2: rotor stray inductance/reactance (referred to stator) 
R’: rotor resistance (split into loss and the equivalent part converted into mechanical 
power, both referred to the stator) 
 
Or any somehow similarly detailed equivalent representation of an induction machine. 
 

c) 

 
 
s = 0 
 
P = 3 · V²/R0; V = 1/√3 450 V = 259.8076 … V 
 
R0 = 3 V²/P = 40.5 Ω 
 
S² = P² + Q² = (3 VI)² 
 
Q = (3VI)² – P² = 3 V²/X0 = 10.568 kVAr 
 
=> X0 = 3 V²/Q = (450 V)²/Q = 19.16 V/A 

 



d)  

 
 
Slip s = 1 per definition, i.e., rotor standing still, i.e., n = 0 rpm; induced rotor current 
is at full frequency fed from the outside, i.e., f = 50 Hz 
 
R1cu = 0.1 Ω 
 
Pin = RI² => R = 30 kW/(300 A)² = 1/3 Ω == 0.1 Ω + R’2 
 
=> R’2 = 0.2333 Ω 
 
Q² = S² – P² = (Vline Iline/√3)² – P² = 9.75 · 108 V²A² = (31224.99 VA)² == XI² 
 
=> X = X1 + X’2 = Q/I² = 0.3469 V/A 
 
Ratio 2:3 
 
X1 = 2/5 X = 0.1388 V/A 
 
X2 = 3/5 X = 0.2082 V/A 

 
e) 

ntyres = 190 · 103 m/h / 1.8 m = 1.0556 · 105 1/h = 1759 1/min 
 
nmotor = ntyres · 17/20 = 1495.4 1/min = 24.92 1/s => nmotor,sync = 25 1/s 
 
f = nmotor,sync 2p = 50 Hz  => p = 4 poles or 2 pole pairs 
 
s = 1 – nmotor /nmotor,sync = 0.0031 

 
f) 

 
Example for operation as a motor. For generative operation, equivalent point with 
negative torque. 



5)         
 
a) 

 
Let us differentiate both equations with respect to x 
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Then in we substitute in 5a1 and 5a2 
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 from the Telegrapher’s 

Equations, and get: 
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These have the same functional form as the wave equation: 
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b)  
The characteristic impedance, Z0 is defined as the ratio between the voltage and the 
current of a unidirectional forward wave on a transmission line at any point, with no 
reflection 
Applying the first of the Telegrapher’s Equations to the given equations for VF and IF 
gives: 
 



𝜕𝜕𝑉𝑉𝐹𝐹
𝜕𝜕𝜕𝜕
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             We get   Z0=Lfλ 
 
 
Considering that 
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We then get  
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c) (i) We know the capacitance per unit length of the line and its characteristic impedance 
 
 
The inductance per unit length is L=CZ0

2=375 nH m-1 
 
Therefore the velocity is: 
 

𝑣𝑣 = 1
√𝐿𝐿𝐿𝐿

 = 1.33x108 m/s 
 
A different dielectric with lower relative permittivity would have to be used to increase the 
wave velocity 
 
(ii) The VSWR is given by: 
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This can be rewritten in terms of the reflection coefficient Lρ  as 
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Or: 
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Hence, for VSWR=1.7 we get: 
 

|𝜌𝜌𝐿𝐿| =
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 1
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 1

=
1.7 − 1
1.7 + 1

= 0.26 
 
 
 
We can relate the reflection coefficient to the impedance of the transmission line and its load 
according to: 
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Hence 
 

𝑍𝑍𝐿𝐿 = 𝑍𝑍0
1 + |𝜌𝜌𝐿𝐿|
1 − |𝜌𝜌𝐿𝐿| = 85.14𝛺𝛺 

 
 
 
(iii)  From the Data Book 
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We want �̅�𝑍𝑖𝑖𝑖𝑖 = �̅�𝑍𝑙𝑙 = �̅�𝑍(−𝑙𝑙)  = 𝑍𝑍0
𝑍𝑍�𝐿𝐿+𝑗𝑗𝑍𝑍0tan(𝛽𝛽𝑙𝑙)
𝑍𝑍0+𝑗𝑗𝑍𝑍�𝐿𝐿tan(𝛽𝛽𝑙𝑙)

 
 
Hence, tan(βl)=0, thus: βl=π 
 
 
Therefore 
 

𝑙𝑙 = 𝜋𝜋
𝛽𝛽

= π
2π/𝜆𝜆

= 𝜆𝜆
2

= 𝑣𝑣
2𝑓𝑓

=0.44m 
 
 
6) 
      
(a) 
Wave equation in one dimension � 𝜕𝜕

2
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− 𝜀𝜀0µ0
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𝜕𝜕𝑧𝑧2
�𝐸𝐸𝛽𝛽 = 0; substitute 𝐸𝐸0 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧) into it 

 
 

𝐸𝐸0𝑗𝑗²𝐿𝐿² 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧) − 𝜀𝜀0µ0𝐸𝐸0𝑗𝑗2𝑗𝑗2𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧) = 0 
 

                            Thus:        𝜔𝜔
𝛽𝛽

= 𝜀𝜀0µ0 
 

Since  𝑗𝑗 = 2π
𝜆𝜆

   and ω=2πf 
 
We get 𝑓𝑓𝑓𝑓 = 𝑐𝑐 = 1

�𝜀𝜀0µ0 
 

 
b) 
 

 
Set 𝐇𝐇 = 𝐮𝐮𝑦𝑦 𝐻𝐻0 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧) 

              Impedance defined as 𝜂𝜂0 = 𝐸𝐸0
𝐻𝐻0

 
 
Putting E into Faraday-Maxwell: 
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 => 𝐻𝐻 =  𝐸𝐸0/𝜂𝜂0   𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧) 
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And 
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c)  
 
100 kW = 100 kJ/s = 104 1/s· 10 J for the pulse energy 
 
Average (and here also peak) power during a pulse: 10 J / 20 fs = ½ · 1015 W = 5 · 1014 W 
 
 
Power density (Intensity) = 4𝑃𝑃

𝑑𝑑2𝜋𝜋
= 2⋅1015 W

1 mm²𝜋𝜋
= 6.37 ⋅ 1020 W/m2  

 
𝜂𝜂0 = 377 Ω 
 
𝐼𝐼 = 1

2
𝑉𝑉 = 𝐸𝐸02

2𝜂𝜂0
  

 

=> 𝐸𝐸02 = 2𝜂𝜂0 𝐼𝐼 = 6.37 ⋅ 1020 VA
m2 ⋅ 2 ⋅ 377 V

A
= 4.8 ⋅ 1023 𝑉𝑉2

𝑚𝑚2 = �6.93 ⋅ 1011 V
m
�
2
 

 

𝐸𝐸0 = 6.93 ⋅ 1011
V
m

 
 
 

𝐻𝐻0 =
𝐸𝐸0
𝜂𝜂0

= 1.84 ⋅ 109
A
m

 

 
 

d)         New impedance 𝜂𝜂inside = �
𝜇𝜇0
2𝜖𝜖0

= 𝜂𝜂0
√2 

= 𝜂𝜂0 ⋅ 0.7071 

Reflection 𝐸𝐸0r
𝐸𝐸0

= 𝜂𝜂−𝜂𝜂0
η+η0

= 17.16% 

Transmission 𝐸𝐸ot
𝐸𝐸0

= 1 − 𝜂𝜂−𝜂𝜂0
η+η0

= 2𝜂𝜂0
𝜂𝜂+ 𝜂𝜂0

= 82.84% => Eot = 5.74·1011 V/m 



𝐻𝐻0𝜔𝜔 =
𝐸𝐸0𝜔𝜔
𝜂𝜂

= 2.15 ⋅ 109
A
m

 

 
 
e) 
 

𝐄𝐄 = 𝐮𝐮𝛽𝛽  𝐸𝐸0 𝑒𝑒𝑗𝑗(𝜔𝜔𝜔𝜔−𝛽𝛽𝑧𝑧)−𝛼𝛼𝑧𝑧 with damping 𝛼𝛼 
exp(−𝛼𝛼 ⋅ 1 m) = 0.9 
α = − ln(0.9) m−1 = 0.105361 m−1 

 
 


