SECTION A

1
a) S5M Mid-band, ignore $C 1+C_{2}$, no here, hoe

Voltage at B_{4} node $=V^{\prime}$

$$
\Rightarrow v_{\text {in }}=h_{i e} b+v^{\prime} \quad v^{\prime}=\left(1+h_{f}\right)\left(r_{1} R_{q}\right.
$$

at output $\frac{0-v_{\text {out }}}{R_{3}}=h_{\text {fe }} i b \Rightarrow v_{\text {out }}=-h_{f e}$ ib R_{3}

$$
\begin{aligned}
& v_{\text {in }}=i b\left[h_{i e}+(1 \text { the }) R_{4}\right]=\frac{-v_{\text {out }}}{n_{f e} R_{3}}\left[\text { hie }+(\text { th fe }+1) R_{4}\right] \\
& \left.V_{\text {out }}\right] \text { in }=\frac{-h e r}{R_{3}} \\
& \text { hie }+\left(1+h h_{e}\right) R_{4}
\end{aligned}
$$

$$
R_{i n}=v_{n} / i i_{n} \quad i_{n}=i b+v_{m} / R_{1} / / R_{2}
$$

from above

$$
\begin{aligned}
& V_{\text {in }}=i b\left(h_{\text {ce }}+\left(1+h_{\text {fe }}\right) R_{\text {q }}\right) \\
& \Rightarrow \quad \text { in }=\frac{V_{\text {in }}}{R_{1} / / R_{e}}+\frac{V_{\text {in }}}{h_{\text {ie }}+\left(1+h_{\text {Le }}\right) R_{4}} \\
& \Rightarrow \frac{V_{\text {in }}}{L_{\text {in }}}=R_{\text {in }}=\frac{1}{1 / R_{1} \| R_{2}+1 /\left(h_{\text {ie }}+\left(1+h_{l}\right) R_{4}\right.} \\
& \begin{aligned}
=\left(R_{0} / / R_{2}\right) / /\left(\begin{array}{l}
1 \\
v_{1 n} e \\
\end{array}+\left(1+h h_{e}\right) R_{4}\right) & \frac{R_{1} \| R_{2}\left(h_{1 e}+\left(1+h_{l}\right) R_{4}\right)}{R_{1} \| R_{2}+h_{1 c}+\left(1+h l_{e}\right) R_{\phi}} \\
= &
\end{aligned}
\end{aligned}
$$

Calculate Rout is difficult ar we have neglected the effect of hoe which make the 55 m impusorble to solve ar R_{3} with the cumentsource shunt (1/haee) directly connected We either bay Rout $\approx R_{3}$ or wehave to include hoe withe som
b) oscillation requires poritue fad bach

For oscillation b occur we reed:
loop gan $|A R| \geqslant 1$
lop phase $\angle A B=0$ on 2π (tue F / B)
The ampluter in part (a) would nut work The oscillator ar it in ain averting anyliten and hor a phase of of $\pi\left(180^{\circ}\right)$ which would give -re feed back.
Either B moot aldo hove a phase of IT ur 180° then it put easy 6 ache cere on we could carrack two arplifier an sever
 $+A^{2}$ phase of 1 w weir.
c)

$$
v_{2}=\frac{v_{1} z}{z+R_{z}^{s}}
$$

where $z=R_{b}\|L\| C$

$$
\begin{aligned}
& L / / C=\frac{j \omega L / / \omega \omega C}{j \omega L+1 / j \omega C}=\frac{j \omega L}{1-\omega^{2} L C} \\
& Z=\frac{j \omega L /\left(1-\omega^{2} L C\right)^{\times R_{6}}}{R_{6}+j \omega L /\left(1-\omega^{2} L C\right)}=\frac{j \omega L R_{6}}{j \omega L+R_{6}\left(1-\omega^{2} L C\right)} \\
& \begin{array}{c}
\frac{V_{2}}{v_{1}}=\frac{j \omega L R_{6}}{R_{5}+\frac{j \omega L+R_{6}\left(1-\omega^{2} L C\right)}{j \omega L+R_{6}\left(1-\omega^{2} L C\right)}}=\frac{j \omega L R_{6}}{j \omega R_{6}+R_{5}\left(j \omega L+R_{6}\left(1-\omega^{2} L C\right)\right)} \\
=\frac{j \omega L R_{6}}{j \omega L\left(R_{\sigma}+R_{6}\right)+R_{\sigma} R_{6}\left(1-\omega^{2} L C\right)}
\end{array}
\end{aligned}
$$

at resonance $1-\omega_{0}^{2} L C=0 \Rightarrow \omega_{0}=\frac{1}{\sqrt{L C}}$
and $\operatorname{Gan} \frac{V_{2}}{U_{1}}=\frac{R_{6}}{R_{5}+R_{6}}$
d)
fo $200 \mathrm{kHz} \quad \omega_{0}=400 \pi h H_{z} \quad R_{\sigma}=R_{\sigma}=200 h \Omega$
$L=1 \times 10^{-3} \mathrm{H}$

$$
\Rightarrow C=\frac{1}{L w_{0}^{2}}=6.33 \times 10^{-10} \mathrm{~F}
$$

Gain $=1 / 2$
New cit

ned toimbine effects of r A R_{c} with R_{6}

$$
\begin{aligned}
& Q=2000=\omega_{0} R_{c} C \\
& \Rightarrow R_{c}=2.5 \mathrm{~m} \Omega
\end{aligned}
$$

For n need to convert b parallel reastance: R_{L}

Both have same Q

$$
\begin{gathered}
\Rightarrow \frac{R_{L}}{\omega_{0} L}=\frac{\omega_{0} L}{r} \\
\Rightarrow R_{L}=\frac{\left(\omega_{0} L\right)^{2}}{r}=1.58 \times 10^{5} \Omega \\
=158 \mathrm{k} \Omega
\end{gathered}
$$

\Rightarrow Total imperfections $=R_{c} / / R_{C}$

$$
=1.49 \times 10^{5} \Omega=149 \mathrm{k} \Omega
$$

Thar or a parakel with $R_{6} \Rightarrow$ new $R_{\delta}^{\prime}=20 \mathrm{k} / / 149 \mathrm{~h}$

$$
=85.3 \mathrm{k} \Omega
$$

\Rightarrow New gan would be $\frac{85 h}{206 h+85 h}=0,3$.
The resistor $R_{\sigma} * R_{6}\left(\operatorname{ar} n_{6}^{\prime}\right)$ are also in occerer and parallel with Min and Rout of the aplites. Hence the gar required for corelation must be further adapted fo the $n \lambda$ account

$$
R_{r}+R_{5} \text { and } R_{6} / / R_{\text {out }} \text {. }
$$

a)
${ }^{\text {Hagh poor- porser high freq }}$

Louparr-parser low freen

Band parr - pasoer a navow hand of freek (parband)

Band Stup [Blocko a namow band of free (alov a notch filte)

b) Ideal opamp $\Rightarrow A=\infty \quad R_{i}=\infty \quad R_{0}=0$

(\rightarrow) inpest is a vistucl earth \Rightarrow at $O V$
no curent into $(-)$ or (t) inputo

$$
\Rightarrow \quad i=\frac{V_{\text {in }}-0}{1 / \omega c+R_{1}}=\frac{0-V_{\text {out }}}{R_{2}}
$$

$$
\frac{\text { Vout }}{V_{n}}=\frac{-R_{2}}{R_{1}+1 / j w c}=\frac{-j \omega R_{2} c}{1+j \omega c R_{2}}
$$

$3 d B$ freq when $1=\omega C R_{2} \Rightarrow F_{1}=\frac{1}{2 \pi R_{2} C}$
skatich Bode plut when $w=0 \quad \frac{V_{\text {out }}}{V_{\text {in }}}=0 \Rightarrow$ high paor filter

Mag

$$
\text { Thase }=45^{\circ} \text { at } 300 \text { fien }
$$

c)

Luw past charcastastic on be mule'by Mring C \downarrow fael bade return

$$
\begin{aligned}
& \frac{V_{2}}{u}=\frac{-R_{2} / / C}{n_{1}} \\
& =\frac{-R_{2}}{1+j \omega C R_{2}}
\end{aligned}
$$

Band stup

To create a bandstros the ther folter mast be an paralul

d)

$$
\begin{aligned}
& \frac{V_{n}-\partial}{R}=I_{\sigma} e^{\left(v_{0} / v_{+}\right)} \\
& \text {(f) } I_{D}=I_{\sigma} e^{\left(v_{b} / /_{t}\right)} \\
& T_{\text {m }} \quad V_{D}=V_{T} \ln \left(\frac{I_{0}}{I_{S}}\right)=v_{T} \ln \left(\frac{i}{I \sigma}\right)
\end{aligned}
$$

$$
=V_{T} \ln \left(\frac{V_{i n}}{R I_{\sigma}}\right)
$$

Given $V_{D}=-V_{\text {out }}$

$$
\Rightarrow V_{\text {out }}=-V_{T} \ln \left(\frac{V_{\text {in }}}{R I_{\sigma}}\right)
$$

Ther ir a loganthmic amplefer.
Thir type of aropliteer ir areful a curcuth wh hyth of Ay^amic mage. It allowr decet rearwemeto of signalo ma decibelre They are also uord in Compeorion circuitr lim thore ared wth analugue to digital convetur on che multiplymg andlugee signals.
e)

The diuch ir a basic PN sunction
ar sabk a the coanouction of a BOT A "A A A BOT can be ured a σ dcale by give the oine luy reopuare but ore a mare slable sage

a)

[5]
power factor of one

b)

$$
\mathrm{V}_{\mathrm{ph}}=22 \mathrm{kV} / \sqrt{ } 3=12.7 \mathrm{kV}
$$

$$
\mathrm{P}=3 \mathrm{VI} \cos \varphi \quad \Rightarrow \mathrm{I}_{\mathrm{ph}}=250 \mathrm{MW} /(3 \cdot 12.7 \mathrm{kV} \cdot 0.8)=8.2 \mathrm{kA}
$$

$$
\sin ^{2} \varphi+\cos ^{2} \varphi=1
$$

$$
\cos \varphi=0.8 \quad \Rightarrow \sin \varphi=0.6
$$

$$
\mathrm{X}_{\mathrm{s}} \mathrm{I}=8.2 \mathrm{kA} \cdot 1 \mathrm{~V} / \mathrm{A}=8.2 \mathrm{kV}
$$

$\mathrm{X}_{\mathrm{S}} \mathrm{I} \cos \varphi=6562 \mathrm{~V}$
$\mathrm{X}_{\mathrm{s}} \mathrm{I} \sin \varphi=4921 \mathrm{~V}$
$\Rightarrow \mathrm{E}^{2}=\left(\mathrm{V}_{\mathrm{ph}}+\mathrm{X}_{\mathrm{s}} \mathrm{I} \sin \varphi\right)^{2}+\left(\mathrm{X}_{\mathrm{s}} \mathrm{I} \cos \varphi\right)^{2}=3.54 \cdot 10^{8} \mathrm{~V}^{2}$
$\Rightarrow \mathrm{E}=18.8 \mathrm{kV}$
$\tan \delta=\mathrm{X}_{\mathrm{s}} \mathrm{I} \cos \varphi /\left(\mathrm{V}_{\mathrm{ph}}+\mathrm{X}_{\mathrm{s}} \mathrm{I} \sin \varphi\right) \Rightarrow \delta=18.1^{\circ}$
c)

Change in power factor achieved through change in rotor excitation. To have a leading power factor, the excitation has to be increased (so that the line practically does not "see" the winding reactance any more but the back-emf voltage over-compensates it and pushes reactive current into the line).

Size of increase (now leading current):
Voltage unchanged $\mathrm{V}_{\mathrm{ph}}=22 \mathrm{kV} / \sqrt{ } 3=12.7 \mathrm{kV}$
$\mathrm{I}_{\mathrm{ph}}=250 \mathrm{MW} /(3 \cdot 12.7 \mathrm{kV} \cdot 0.9)=7.29 \mathrm{kA}$
$\cos \varphi=0.9 \quad \Rightarrow \sin \varphi=0.4359$
$\mathrm{X}_{\mathrm{s}} \mathrm{I}=7.29 \mathrm{kA} \cdot 1 \mathrm{~V} / \mathrm{A}=7.29 \mathrm{kV}$
$\mathrm{V}_{\mathrm{ph}} \sin \varphi=5.536 \mathrm{kV}>\mathrm{X}_{\mathrm{s}} \mathrm{I} \Rightarrow$ triangle as follows:
$\mathrm{X}_{\mathrm{s}} \mathrm{I}-\mathrm{x}=\mathrm{V}_{\mathrm{ph}} \sin \varphi=5.536 \mathrm{kV}$
$\mathrm{V}_{\mathrm{ph}} \cos \varphi=\mathrm{y}=11.43 \mathrm{kV}$
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{E}^{2}$
$\Rightarrow \mathrm{E}^{2}=\left(\mathrm{X}_{\mathrm{s}} \mathrm{I}-\mathrm{V}_{\mathrm{ph}} \sin \varphi\right)^{2}+\left(\mathrm{V}_{\mathrm{ph}} \cos \varphi\right)^{2}=1.34 \cdot 10^{8} \mathrm{~V}^{2}$
$\Rightarrow \mathrm{E}=11.56 \mathrm{kV}$
d)
$50 \mathrm{MVar} /(3 \cdot 12.7 \mathrm{kV})=1312 \mathrm{~A}$ (fully reactive)
$\mathrm{X}_{\mathrm{s}} \mathrm{I}=1312 \mathrm{~V}$
Acting as a capacitor (compensating inductive load): $\mathrm{E}=\mathrm{V}_{\mathrm{ph}}+\mathrm{X}_{\mathrm{s}} \mathrm{I}=14 \mathrm{kV}$

Acting as an inductor (compensating capacitive load): $\mathrm{E}=\mathrm{V}_{\mathrm{ph}}-\mathrm{X}_{\mathrm{s}} \mathrm{I}=11.4 \mathrm{kV}$

SECTION B

4
a)

Both the stator and rotor are wound with 3-phase windings. The current applied to the stator produces a rotating magnetic field, which induces currents in the rotor if the rotor is not at the same speed as the rotating stator field due to the changing flux linkage (similar to a transformer). The rotor currents then produce their own magnetic field. The rotor and stator magnetic fields interact to produce a torque. At synchronous speed, the rotor is spinning at the same frequency as the stator field, so the flux linkage remains constant, and there is no induced emf in the rotor coils, so there will be no rotor field, and no torque on the rotor.
(b)

R_{1} : copper resistance in stator
L_{1} : stator stray inductance/reactance
R_{fe} : equivalent iron-loss resistance
$\mathrm{L}_{1 \mathrm{~m}}$: magn. reactance
L'2: rotor stray inductance/reactance (referred to stator)
R^{\prime} : rotor resistance (split into loss and the equivalent part converted into mechanical power, both referred to the stator)

Or any somehow similarly detailed equivalent representation of an induction machine.
c)

$$
\begin{aligned}
& s=0 \\
& P=3 \cdot V^{2} / R_{0} ; \mathrm{V}=1 / \sqrt{ } 3450 \mathrm{~V}=259.8076 \ldots \mathrm{~V} \\
& R_{0}=3 V^{2} / P=40.5 \Omega \\
& S^{2}=P^{2}+Q^{2}=(3 V I)^{2} \\
& Q=(3 V I)^{2}-P^{2}=3 V^{2} / X_{0}=10.568 \mathrm{kVAr} \\
& \Rightarrow X_{0}=3 V^{2} / Q=(450 \mathrm{~V})^{2} / Q=19.16 \mathrm{~V} / \mathrm{A}
\end{aligned}
$$

d)

Slip $s=1$ per definition, i.e., rotor standing still, i.e., $n=0 \mathrm{rpm}$; induced rotor current is at full frequency fed from the outside, i.e., $f=50 \mathrm{~Hz}$
$R_{1 \mathrm{cu}}=0.1 \Omega$
$P_{\text {in }}=R I^{2} \Rightarrow R=30 \mathrm{~kW} /(300 \mathrm{~A})^{2}=1 / 3 \Omega==0.1 \Omega+\mathrm{R}^{\prime}{ }_{2}$
$=>R^{\prime}{ }_{2}=0.2333 \Omega$
$Q^{2}=S^{2}-P^{2}=\left(V_{\text {line }} I_{\text {line }} / \sqrt{ } 3\right)^{2}-P^{2}=9.75 \cdot 10^{8} \mathrm{~V}^{2} \mathrm{~A}^{2}=(31224.99 \mathrm{VA})^{2}==X I^{2}$
$=>X=X_{1}+X^{\prime}{ }_{2}=Q / P^{2}=0.3469 \mathrm{~V} / \mathrm{A}$
Ratio 2:3
$X_{1}=2 / 5 X=0.1388 \mathrm{~V} / \mathrm{A}$
$X_{2}=3 / 5 X=0.2082 \mathrm{~V} / \mathrm{A}$
e)
$n_{\text {tyres }}=190 \cdot 10^{3} \mathrm{~m} / \mathrm{h} / 1.8 \mathrm{~m}=1.0556 \cdot 10^{5} 1 / \mathrm{h}=17591 / \mathrm{min}$
$n_{\text {motor }}=n_{\text {tyres }} \cdot 17 / 20=1495.41 / \mathrm{min}=24.921 / \mathrm{s}=>n_{\text {motor, sync }}=251 / \mathrm{s}$
$f=n_{\text {motor,sync }} 2 \mathrm{p}=50 \mathrm{~Hz}=>\mathrm{p}=4$ poles or 2 pole pairs
$\mathrm{s}=1-n_{\text {motor }} / n_{\text {motor, sync }}=0.0031$
f)

Example for operation as a motor. For generative operation, equivalent point with negative torque.
5)
a)

Let us differentiate both equations with respect to x

$$
\begin{align*}
& \frac{\partial^{2} V}{\partial x^{2}}=-L \frac{\partial}{\partial t}\left(\frac{\partial I}{\partial x}\right)=L C \frac{\partial^{2} V}{\partial t^{2}} \tag{5al}\\
& \frac{\partial^{2} I}{\partial x^{2}}=-C \frac{\partial}{\partial t}\left(\frac{\partial V}{\partial x}\right)=L C \frac{\partial^{2} I}{\partial t^{2}} \tag{5a2}
\end{align*}
$$

Then in we substitute in 5 a 1 and $5 \mathrm{a} 2 \frac{\partial I}{\partial x}$ and $\frac{\partial V}{\partial x}$ from the Telegrapher's
Equations, and get:
$\frac{\partial^{2} V}{\partial x^{2}}=L C \frac{\partial^{2} V}{\partial t^{2}}$
$\frac{\partial^{2} I}{\partial x^{2}}=L C \frac{\partial^{2} I}{\partial t^{2}}$
These have the same functional form as the wave equation:

$$
\frac{\partial^{2} A}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} A}{\partial t^{2}}
$$

Hence:

$$
v^{2}=\frac{1}{L C}
$$

b)

The characteristic impedance, Z_{0} is defined as the ratio between the voltage and the current of a unidirectional forward wave on a transmission line at any point, with no reflection
Applying the first of the Telegrapher's Equations to the given equations for V_{F} and I_{F} gives:

$$
\frac{\partial V_{F}}{\partial x}=-j \beta \overline{V_{F}} e^{j(\omega t-\beta x)}=-L j \omega \overline{I_{F}} e^{j(\omega t-\beta x)}=-L \frac{\partial I_{F}}{\partial t}
$$

Hence

$$
Z_{0}=\frac{\overline{V_{F}}}{\overline{I_{F}}}=\frac{L \omega}{\beta}
$$

Since

$$
\omega=2 \pi f \quad \text { and } \quad \beta=\frac{2 \pi}{\lambda}
$$

We get $Z_{0}=L f \lambda$

Considering that

$$
v=f \lambda=\frac{1}{\sqrt{L C}}
$$

We then get
$Z_{0}=\sqrt{\frac{L}{C}}$
c) (i) We know the capacitance per unit length of the line and its characteristic impedance

The inductance per unit length is $\mathrm{L}=\mathrm{CZ}_{0}{ }^{2}=375 \mathrm{nH} \mathrm{m}^{-1}$
Therefore the velocity is:
$v=\frac{1}{\sqrt{L C}}=1.33 \times 10^{8} \mathrm{~m} / \mathrm{s}$

A different dielectric with lower relative permittivity would have to be used to increase the wave velocity
(ii) The VSWR is given by:
$V S W R=\frac{\text { Maximum voltage }}{\text { Minimum voltage }}=\frac{\left|\overline{V_{F}}\right|+\left|\overline{V_{B}}\right|}{\left|\overline{V_{F}}\right|-\left|\overline{V_{B}}\right|}$

This can be rewritten in terms of the reflection coefficient $\bar{\rho}_{L}$ as

$$
V S W R=\frac{\left.1+\frac{\left|\overline{V_{B}}\right|}{\mid \overline{V_{F}}} \right\rvert\,}{1-\frac{\left|\overline{V_{B}}\right|}{\left|\bar{V}_{F}\right|}}=\frac{\left.1+\frac{\left\lvert\, \frac{\overline{V_{B}}}{\bar{V}_{F}}\right.}{|c|} \right\rvert\,}{1-\left|\frac{\overline{V_{B}}}{\left\lvert\, \frac{V_{F}}{F}\right.}\right|}=\frac{1+\left|\rho_{\iota}\right|}{1-\left|\rho_{\iota}\right|}
$$

Or:

$$
\left|\rho_{L}\right|=\frac{V S W R-1}{V S W R+1}
$$

Hence, for VSWR=1.7 we get:

$$
\left|\rho_{L}\right|=\frac{V S W R-1}{V S W R+1}=\frac{1.7-1}{1.7+1}=0.26
$$

We can relate the reflection coefficient to the impedance of the transmission line and its load according to:

$$
\bar{\rho}_{L}=\frac{\overline{Z_{L}}-Z_{0}}{\overline{Z_{L}}+Z_{0}}
$$

Hence

$$
Z_{L}=Z_{0} \frac{1+\left|\rho_{L}\right|}{1-\left|\rho_{L}\right|}=85.14 \Omega
$$

(iii) From the Data Book

$$
\bar{Z}_{b}=\bar{Z}(-b)=Z_{0} \frac{\bar{Z}_{L}+j Z_{0} \tan (\beta b)}{Z_{0}+j \bar{Z}_{L} \tan (\beta b)}
$$

We want $\bar{Z}_{i n}=\bar{Z}_{l}=\bar{Z}(-l)=Z_{0} \frac{\bar{Z}_{L}+j Z_{0} \tan (\beta l)}{Z_{0}+j \bar{Z}_{L} \tan (\beta l)}$

Hence, $\tan (\beta \mathrm{l})=0$, thus: $\beta 1=\pi$

Therefore

$$
l=\frac{\pi}{\beta}=\frac{\pi}{2 \pi / \lambda}=\frac{\lambda}{2}=\frac{v}{2 f}=0.44 \mathrm{~m}
$$

6)

(a)

Wave equation in one dimension $\left(\frac{\partial^{2}}{\partial t^{2}}-\varepsilon_{0} \mu_{0} \frac{\partial^{2}}{\partial z^{2}}\right) E_{x}=0$; substitute $E_{0} e^{j(\omega t-\beta z)}$ into it

$$
E_{0} j^{2} \omega^{2} e^{j(\omega t-\beta z)}-\varepsilon_{0} \mu_{0} E_{0} j^{2} \beta^{2} e^{j(\omega t-\beta z)}=0
$$

$$
\text { Thus: } \quad \frac{\omega}{\beta}=\varepsilon_{0} \mu_{0}
$$

Since $\beta=\frac{2 \pi}{\lambda}$ and $\omega=2 \pi \mathrm{f}$
We get $f \lambda=c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$
b)

$$
\begin{aligned}
& \text { Set } \mathbf{H}=\mathbf{u}_{y} H_{0} e^{j(\omega t-\beta z)} \\
& \text { Impedance defined as } \eta_{0}=\frac{E_{0}}{H_{0}}
\end{aligned}
$$

Putting E into Faraday-Maxwell:

$$
\frac{\partial E_{x}}{\partial z}=-\mu \frac{\partial H_{y}}{\partial t}
$$

$$
\frac{E}{H}=\frac{\mu_{0} \omega}{\beta}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=>H=E_{0} / \eta_{0} e^{j(\omega t-\beta z)}
$$

Since $\underline{\bar{S}}=\frac{1}{2} \underline{\bar{E}} \times \underline{\bar{H}}^{*}$
We get

$$
\overline{\bar{S}}=\frac{1}{2} E_{x} H^{*}{ }_{y} \underline{a_{z}}
$$

And

$$
\text { Average Power }=\frac{\left|E_{x}\right|^{2}}{2 \eta_{0}}
$$

c)
$100 \mathrm{~kW}=100 \mathrm{~kJ} / \mathrm{s}=10^{4} 1 / \mathrm{s} \cdot 10 \mathrm{~J}$ for the pulse energy
Average (and here also peak) power during a pulse: $10 \mathrm{~J} / 20 \mathrm{fs}=1 / 2 \cdot 10^{15} \mathrm{~W}=5 \cdot 10^{14} \mathrm{~W}$

Power density (Intensity) $=\frac{4 P}{d^{2} \pi}=\frac{2 \cdot 10^{15} \mathrm{~W}}{1 \mathrm{~mm}^{2} \pi}=6.37 \cdot 10^{20} \mathrm{~W} / \mathrm{m}^{2}$

$$
\begin{aligned}
& \eta_{0}=377 \Omega \\
& I=\frac{1}{2} S=\frac{E_{0}^{2}}{2 \eta_{0}} \\
& =>E_{0}^{2}=2 \eta_{0} I=6.37 \cdot 10^{20} \frac{\mathrm{VA}}{\mathrm{~m}^{2}} \cdot 2 \cdot 377 \frac{\mathrm{~V}}{\mathrm{~A}}=4.8 \cdot 10^{23} \frac{\mathrm{~V}^{2}}{\mathrm{~m}^{2}}=\left(6.93 \cdot 10^{11} \frac{\mathrm{~V}}{\mathrm{~m}}\right)^{2} \\
& \qquad E_{0}=6.93 \cdot 10^{11} \frac{\mathrm{~V}}{\mathrm{~m}}
\end{aligned}
$$

$$
H_{0}=\frac{E_{0}}{\eta_{0}}=1.84 \cdot 10^{9} \frac{\mathrm{~A}}{\mathrm{~m}}
$$

d) New impedance $\eta_{\text {inside }}=\sqrt{\frac{\mu_{0}}{2 \epsilon_{0}}}=\frac{\eta_{0}}{\sqrt{2}}=\eta_{0} \cdot 0.7071$

$$
\text { Reflection } \frac{E_{0 r}}{E_{0}}=\frac{\eta-\eta_{0}}{\eta+\eta_{0}}=17.16 \%
$$

Transmission $\frac{E_{\text {ot }}}{E_{0}}=1-\frac{\eta-\eta_{0}}{\eta+\eta_{0}}=\frac{2 \eta_{0}}{\eta+\eta_{0}}=82.84 \% \Rightarrow \mathrm{E}_{\mathrm{ot}}=5.74 \cdot 10^{11} \mathrm{~V} / \mathrm{m}$

$$
H_{0 t}=\frac{E_{0 t}}{\eta}=2.15 \cdot 10^{9} \frac{\mathrm{~A}}{\mathrm{~m}}
$$

e)

$$
\begin{aligned}
& \mathbf{E}=\mathbf{u}_{x} E_{0} e^{j(\omega t-\beta z)-\alpha z} \text { with damping } \alpha \\
& \exp (-\alpha \cdot 1 \mathrm{~m})=0.9 \\
& \alpha=-\ln (0.9) \mathrm{m}^{-1}=0.105361 \mathrm{~m}^{-1}
\end{aligned}
$$

