2P6 Solutions 2025

SECTION A
1. (a) i A LTI system with impulse response function g is asymptotically stable iff
I3 lg(t)]dt is bounded. 2]
ii. T.F. G(s) will be rational (G(s) = n(s)/d(s) for polynomials n, d) and proper
(deg(d) > deg(n)). 2]

(b) The asymptote at low frequencies has magnitude 30dB giving a = 31.6. The break
point at 0.01 rad/sec (where the magnitude starts to drop at 20dB/dec) accounts
for the (1+ 100s) term in the denominator. The gain levels off with a breakpoint at
0.2 rad/s, suggesting T3 = 5. There are resonant and anti-resonant peaks at 1 rad/s
and 10 rad/s respectively, giving 1/T5 = 1 and 1/7} = 10. With no further poles the
magnitude would level off, but there is another breakpoint at 300 rad/s accounting
for Ty. Hence the values are

a=316T1=01, To =1, Ty =5, T, = 0.003.

8]
(c) (i) Phase is always above -180 deg therefore gain margin is infinite. 2]
(ii) Phase is -100 deg at w = 1 rad/s, where the gain is 8.5 dB ( = 2.66), therefore
k1 = 0.38. Note that at 10 rad/s, phase is also -100 deg, but system would
already be unstable at a phase lag of -80 deg. 2]
(ii) An accurate plot is shown below: 5]
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(iii) K(s) reduces the slope of the gain by 20 dB/dec between 1 rad/s and 10rad/s,
so the gain now hits zero at 2 rad/s. The phase lead due to K is approx 50 deg
at 2 rad/s, so the phase margin is now just under 80 deg (accurate value 74.2
deg). 4]



2. (a)

Substituting s := jw and inspecting the limits as w — 00,0, we see that:

e (G; = B because G; — 2 as w — o0.

e (G5 = A because Gy — —0.5 as w — 00.

o (G = C because Gg — 1 as w — 0 and B is accounted for.
e (G5 = E because G5 — 2 as w — 0 and G5 — 0 as w — .
e G3 = D because R(G3) = % — 1.9 asw — 0.

e (G4, = F by elimination.

BADFEC. 8]

The phase ¢ can be computed by simply adding the contributions of jiw, (lTluw) and
m, giving:
¢ =—7n/2 —tan" ' (W) — tan"H(WT}).

For the magnitude, note that

G| = | |

jw(l + Tyjw)(1 + Tajw)
Evaluating asymptotic frequencies using these expressions, we have:
¢ — —m/2 and |G(jw)| — oo as w — 0F
¢ — —31/2=m7/2 mod 27 and |G(jw)| — 0 as w — 0.
[5]

Yes. First note that

1 - _(Tl + Tg) - 3_.)(1 - w2T1T2)

Gliw) = _
Ue) = A )0 T Toje) ~ 11212 +12) + A TPT2

which has negative real part for all frequencies.

Second, from part (i) we know that as w goes from 0 to oo, the Nyquist locus moves
from —joo to approach the origin from an angle of /2 (i.e. from above the real
axis). Therefore there must be a crossing of the real axis. This occurs when the
imaginary component is zero, i.e.

(1 — CUQTlTQ) =0 = w= 1/\/T1T2



(d) Sketch: 3]

0 A
3
3
S}
E
0
Re(G/(jw))

(e) Substituting in w = 1/4/T1T5 to the real component of KG(jw) (computed in (c)):

! L+ (TP +T13) /(1) + 1 T+ (TP +T5)+ T, T+ T

By the Nyquist criterion, for asymptotic stability the locus must avoid encircling the
—1 point, requiring:
KTl T2 Tl + T2
>—-1 = K<
T+1T; 13




3.

(a) Laplace transforming the model equations with zero initial conditions gives:

SN1 = U—F1 F1 :CK(Nl —Ng)
sNy = F| — I, FQZﬂNQ

Substituting, and eliminating the NV, variables, we get

: — a(s+5)

L Gyi= 71 T 824 (B+2a)s+aB
.. B B

i. Gy := ﬁ =315

ili. G(s) = Ga(s)Gi(s) = m, therefore P = R = off and Q = (S + 2a).

(b) First, analyse the system and step response. In Laplace domain U(s) = A/s therefore

Fy(s) = ém Using final value theorem, sFy(s) — A as s — 07 therefore

fa(t) = A as t — oo. Similarly, initial value theorem (or elementary reasoning)

gives f»(0) = 0.
To assess intermediate behaviour, note that G(s) is a stable second order system,

and:
af B 1
s2+ (B +2a)s +af  s2/(af) + (B +2a)s/(af) + 1

From data book and by inspection of G, we find the time period "= 1/4/(af) and
following relation for the damping factor, (:

G(s) =

C:a+ﬁ/2 . 62:a2+aﬁ+52

(af) af

Therefore there is no resonance/overshoot in the response (it is overdamped).

>1 = (> 1.

i. From above reasoning, sketch is as follows:
Step Response

ol
0
ii. From above analysis, frequency response of GG has gain of 1 at zero frequency,
monotonically decreasing thereafter. Therefore the steady state outflow rate can
never exceed the inflow rate for any realisable input, but may transiently (e.g.
input abruptly shut off).



()

1.

11.

Block diagram (NB, students who place k on the feedback path will also get full

marks): 3]
Uref f2
i{‘p‘ k= G(s)
For diagram showm, New CLTF is 1ij‘ Plugging in expression for G:
af af
kG . k32+(,6’+2a)5+aﬁ . k52+(ﬂ+2a)s+o¢,3 . ]COéﬁ
- o T 24 (BH2a)s+aftkaB T o2 :
1+ kG 1+ kT aTameTan T Fat 24+ (B + 2a)s + aff + kaf
The gain at zero frequency is therefore Hik (or, alternatively, use final value
theorem as above). Thus the steady outflow rate becomes: 4]
s Ak
2 1+k

Students who placed k on the feedback path will get full marks for a CLTF as

82+(ﬂ+2a0){f+aﬁ Thad and a corresponding steady state as f5° = Hik




SECTION B

4. (a-1) **Fourier Transform of x(t) = sgn(t)e M **

The Fourier Transform of z(t) is given by:

X(w) = /_Oo z(t)e 7 dt.

oo

Breaking the integral into two parts for ¢ > 0 and ¢ < O:

00 0
X(w) :/ e_ate_j“’tdt—/ ee I L,
0

—00

For t > 0:

0 a+ jw

0 1
—/ et gt = — .
oo a— Jjw

1 1
X(w) = — = —2jw/(a® + w?).
@) = s T, Y/ )

For t < 0:

Combining both terms:

Thus, the Fourier Transform is verified:

—2jw
X(w) = — 2%
@) a? + w?
(a-2) **Magnitude and Phase Spectra:**
The magnitude spectrum is:
2|
X = .
X(@)l = e

The phase spectrum is:
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Figure 1: Magnitude and Phase Spectra of X (w) = —2jw/(a® + w?).

(b) Verification of Parseval’s Theorem for f(t) = e~/
Given information

o f(t) = e where a > 0

e We need to verify: [*|f(t)|*dt = 5= [T |F(w)|?dw

e Hint: ffooo mdx =3

Left-Hand Side (LHS)

Calculate |f(t)|?
IF)2 = (eol)2 = g2l

/ \f(t)|2dt:/ e~ 2alt gt
0 ']
/ 62atdt+/ 6_2atdt
—00 0

Set up the LHS integral

Split the integral at t = 0

Evaluate each integral

For fi)oo e2atdt:
1 o, 1 1
— p2 — —(1-0)= —
Zae 2a( ) 2a
For fooo e~ 20t t:
1ol 1 1
——e " =——(0-1)=—
2a€ 0 2a( ) 2a




Sum the results | | )
LHS= — + — = —
2a + 2a a

Right-Hand Side (RHS)
Step 1: Calculate the Fourier Transform F(w)

F(w):/ e~ et gy

[e.e]

Split the integral:
0 00
F(w) :/ e“teiwtdt—i-/ e~ e Wt
0

Evaluate:
1 1 2a

— + — = — >
a+ 1w a — 1w a® + w

Step 2: Calculate |F(w)|?

Step 3: Set up the RHS integral

1 o 1 o 4a?
Fw)Pdo = — | —— —dw

o | o 21 J_ (a® 4+ w?)?

Step 4: Simplify the integral
Step 5: Substitute z = ¢

Step 6: Use the given hint
Step 7: Simplify

Conclusion

We have shown that both the LHS and RHS evaluate to %, thus verifying the relation:

/ TP =2 [ PP =1

o 21 J_ o a



This relation is a specific case of Parseval’s theorem, which states that the energy of a
signal in the time domain equals the energy of its Fourier transform in the frequency
domain.

(c) Using the Convolution Theorem, we evaluate the convolution of two signals in the
frequency domain:

z(t) = sgn(t)e ¥ h(t) = u(t) — ut = T)

where u(t) denotes the unit step function.

Step 1: Compute Fourier Transforms of z(t) and h(t) For x(t) = sgn(t)e~*": From
previous results, the Fourier Transform is:

—2jw

X =7

For h(t) = u(t)—u(t—T): This is a rectangular pulse of duration T". Its Fourier Transform
Is:
1— —jwT

Hw)=—2"
Jw
Step 2: Apply the Convolution Theorem
The convolution y(t) = x(t) * h(t) in the frequency domain becomes:
2w 1—e T 21— e VT
a4 w? jo @+ w?

Step 3: Compute Inverse Fourier Transform

Break Y (w) into two terms:

-2 2eIwT

a? + w? Jra2~|—cu2

Y(w) =

2a
a?+w?

—2 1
—1 _ _ ——alt|
d {a2 —|—w2} at

Second term (e7“T — time shift):
F1 ﬂ — le—alt—T\
a? + w? a

(efa\t7T| . efa\t|>

Using the Fourier Transform pair & e we find:

First term:

Combine results:

y(t) =

SHES

Step 4: Case Analysis



D.

Final Result

The solution simplifies for different ranges of ¢: For ¢ < 0:

y(t) _ é (ea(t—T) . eat)

For0<t<T:

Fort > T

(e—a\t—T| . e—a\t|)

<
—~
~
N—
I
Q|

(a) (a.i) The original frequency in Hz is:

2000
F =" _[1000 Hz

2T

(a.ii) The Nyquist frequency is:

s 1500
fNyquist = f? - T =

(a.iii)
e Comparison: Original frequency = 1000 Hz, Nyquist frequency = 750 Hz.
Since 1000 Hz > 750 Hz, aliasing occurs.

e Calculation: Observed frequency due to aliasing:

fobserved = fs - foriginal = 1500 — 1000 =

e Explanation: The reconstruction filter (cutoff = 750 Hz) cannot resolve fre-
quencies above 750 Hz. The aliased frequency folds back into the range [0, 750 Hz],
resulting in 500 Hz.

(b) DFT The DFT is given by the formula:
XK= aznle ¥ k=01,2... N—-1

Calculate Each X[k]
*For k = 0:**

Simplify:



Evaluate:

**For k= 1:**

Substituting each term:

=1+2775 40+ (1) /7

Evaluate each exponential:

=J
Substituting:
=1+2(=j) +0+(=1)j
Simplify:
X[1]=1-3j
**For k = 2:

Simplify each term:
=142+ 0+ (1) 7"

Evaluate:
e T =—1, e =-1
Substituting:
=142(-1)+0+ (—-1)(-1)
Simplify:
X[2]=1-241=0
**For k = 3:%*

Simplify each term:
- 97

=1+27F 404 (~1)e 77

Evaluate:

Substituting:
=1+2(j) + 0+ (=1)(=J)
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Simplify:
X[B]=1+3j

The DFT coefficients are:

(b) (i) Recall that the Fourier transform of cos(2m fot) is $[6(f — fo) —6(f + fo)]. Thus
the Fourier transform of m(t) = 2 cos(10007t) — cos(20007t) is 3]

5(f — 500) + 6(f + 500) — %[(S(f— 1000) + 8(f + 1000).

(ii) The modulation factor § = %, where W is the signal bandwidth and Af =
ke max|m(t)| is the frequency deviation. The maximum absolute value of m(t)
is 3. This can be seen either by inspection (say by observing that m(t) =
—3 at t = 1/1000)) or by differentiating and setting m/(t) = 0. Therefore,

Af = 3000 -3 = 9000. From part (b)(i), the signal bandwidth is W = 1000

Hz. Therefore. = % =09. 5]
By Carson’s rule, the bandwidth of the FM signal is approximately 2(145)W =
20kHz.

(iii) To recover m(t) from the FM signal, we can use a differentiator followed by an
envelope detector. Indeed, differentiating s(t), we obtain

ds(t)

s(t) = e 27(f. + kem(t)) cos (27rfct + 27k /Otm(u)du) :

Since f. > ks max|m(t)|, we can use a standard AM-style envelope detector to
recover m(t) from s'(¢). The differentiator can be implemented via a filter with
frequency response H(f) = j2nf. 5]

12



6.

(a) The rate of transmission is 1/7" = 1000 bits/s. 2]

(b) From the duality theorem (Information databook), we know that the Fourier trans-

form of p(t) = \/LTsinc (%) is a rectangular function (in frequency) given by: 5]

(f) .
0, otherwise .

(An answer in terms of P(w) is also fine.) Therefore, the baseband bandwidth of
2y(t) is 5 (since for a fixed sequence of symbols X,(f) = (3, Xee2™*T) P(f)).

2T
Hence the passband bandwidth of z(t) is 7 = 10kHz.
(¢) (i) The block diagram is shown below. 5]
Low-pags
B £ o I
&1 H1Y
(oS (enfet)
£zmT
e Pk ] VSN
W > ()
o hio=pl-H !

The low-pass filter H(f) has constant gain for f € [—%, %] and a cutoff
frequency that is a bit larger (say % to allow for a roll-off, enablling practical
implementation). The impulse response of the matched filter is h(t) = p(—t) =

\/Lfsinc(ﬁt/T).

(ii) The optimum decision rule is X,, = A if ¥;, > A/2, and X,, = 0 otherwise.  [4]
The probability of decision error is

P.= P(X = 0)P(Y > A/2 | X = 0) + P(X = A)P(Y < A/2| X = A)
_ %P(N > A/2) + %P(N < —A)2)

—P(NEA/Q)—Q(%)—Q( %).

(iii) For a {0, A} constellation, the average energy per bit is A?/2. Therefore

P.=Q (\ / 2%’2) Using the approximation, we have P. &~ 1 exp(—Ey/(40?)).
Setting this to 0.01, we obtain Ej/0? = 4 % In 50 = 15.65, which is 11.95dB.  [4]

(iv) The probability of each symbol being detected in error in 0.01 (since the snr is
the same as in part (iii)). The Hamming code can correct up to one detection
error in each block of 7 symbol, so the probability that an information bit is
decoded in error is

7

o) (0.99)7 — (D (0.99)%(0.01) = 0.002.

PHamming error — 1— (

13



With a (7,4) Hamming code, we need 7 binary symbols to transmit 4 infor-
mation bits. Therefore, the effective transmission rate is Reg = %% = 40% =
571.43 bits/second. 5]
Therefore, with the Hamming code the probability of an information bit being
decoded wrongly is smaller by a factor of 5 compared to the uncoded case, but

the effective transmission rate is ‘—;th of the uncoded system.

T O’Leary, F Mancini, R. Venkataramanan
7 February 2025
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