
2P6 Solutions 2025

SECTION A

1. (a) i. A LTI system with impulse response function g is asymptotically stable iff∫∞
0
|g(t)|dt is bounded. [2]

ii. T.F. G(s) will be rational (G(s) = n(s)/d(s) for polynomials n, d) and proper
(deg(d) ≥ deg(n)). [2]

(b) The asymptote at low frequencies has magnitude 30dB giving a = 31.6. The break
point at 0.01 rad/sec (where the magnitude starts to drop at 20dB/dec) accounts
for the (1 + 100s) term in the denominator. The gain levels off with a breakpoint at
0.2 rad/s, suggesting T3 = 5. There are resonant and anti-resonant peaks at 1 rad/s
and 10 rad/s respectively, giving 1/T2 = 1 and 1/T1 = 10. With no further poles the
magnitude would level off, but there is another breakpoint at 300 rad/s accounting
for T4. Hence the values are

a = 31.6, T1 = 0.1, T2 = 1, T3 = 5, T4 = 0.003̇.

[8]

(c) (i) Phase is always above -180 deg therefore gain margin is infinite. [2]

(ii) Phase is -100 deg at ω = 1 rad/s, where the gain is 8.5 dB ( = 2.66), therefore
k1 = 0.38. Note that at 10 rad/s, phase is also -100 deg, but system would
already be unstable at a phase lag of -80 deg. [2]

(ii) An accurate plot is shown below: [5]

(iii) K(s) reduces the slope of the gain by 20 dB/dec between 1 rad/s and 10rad/s,
so the gain now hits zero at 2 rad/s. The phase lead due to K is approx 50 deg
at 2 rad/s, so the phase margin is now just under 80 deg (accurate value 74.2
deg). [4]
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2. (a) Substituting s := jω and inspecting the limits as ω →∞, 0, we see that:

• G1 = B because G1 → 2 as ω →∞.

• G2 = A because G2 → −0.5 as ω →∞.

• G6 = C because G6 → 1 as ω → 0 and B is accounted for.

• G5 = E because G5 → 2 as ω → 0 and G5 → 0 as ω →∞.

• G3 = D because <(G3) = −1/10+2ω2

ω2+ω4/100
→ 1.9 as ω → 0.

• G4 = F by elimination.

BADFEC. [8]

(b) The phase φ can be computed by simply adding the contributions of 1
jω

, 1
(1+T1jω)

and
1

(1+T2jω)
, giving:

φ = −π/2− tan−1(ωT1)− tan−1(ωT2).

For the magnitude, note that

|G(jω)| = | 1

jω(1 + T1jω)(1 + T2jω)
|

Evaluating asymptotic frequencies using these expressions, we have:

φ→ −π/2 and |G(jω)| → ∞ as ω → 0+

φ→ −3π/2 = π/2 mod 2π and |G(jω)| → 0 as ω →∞.

[5]

(c) Yes. First note that

G(jω) =
1

jω(1 + T1jω)(1 + T2jω)
=
−(T1 + T2)− j

ω
(1− ω2T1T2)

1 + ω2(T 2
1 + T 2

2 ) + ω4T 2
1 T

2
2

which has negative real part for all frequencies.
Second, from part (i) we know that as ω goes from 0 to∞, the Nyquist locus moves
from −j∞ to approach the origin from an angle of π/2 (i.e. from above the real
axis). Therefore there must be a crossing of the real axis. This occurs when the
imaginary component is zero, i.e.

(1− ω2T1T2) = 0 =⇒ ω = 1/
√
T1T2

[4]
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(d) Sketch: [3]

(e) Substituting in ω = 1/
√
T1T2 to the real component of KG(jω) (computed in (c)):

<(G(jω)) =
−K(T1 + T2)

1 + (T 2
1 + T 2

2 )/(T1T2) + 1
=

−K(T1 + T2)T1T2

T1T2 + (T 2
1 + T 2

2 ) + T1T2

=
KT1T2

T1 + T2

By the Nyquist criterion, for asymptotic stability the locus must avoid encircling the
−1 point, requiring:

KT1T2

T1 + T2

> −1 =⇒ K <
T1 + T2

T1T2

[5]
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3. (a) Laplace transforming the model equations with zero initial conditions gives:

sN1 = U − F1 F1 = α(N1 −N2)

sN2 = F1 − F2 F2 = βN2

Substituting, and eliminating the Nx variables, we get

i. G1 := F1

U
= α(s+β)

s2+(β+2α)s+αβ
[4]

ii. G2 := F2

F1
= β

s+β
[3]

iii. G(s) = G2(s)G1(s) = αβ
s2+(β+2α)s+αβ

, therefore P = R = αβ and Q = (β + 2α). [3]

(b) First, analyse the system and step response. In Laplace domain U(s) = A/s therefore
F2(s) = A

s
αβ

s2+(β+2α)s+αβ
. Using final value theorem, sF2(s)→ A as s→ 0+ therefore

f2(t) → A as t → ∞. Similarly, initial value theorem (or elementary reasoning)
gives f2(0) = 0.
To assess intermediate behaviour, note that G(s) is a stable second order system,
and:

G(s) =
αβ

s2 + (β + 2α)s+ αβ
=

1

s2/(αβ) + (β + 2α)s/(αβ) + 1

From data book and by inspection of G, we find the time period T = 1/
√

(αβ) and
following relation for the damping factor, ζ:

ζ =
α + β/2√

(αβ)
=⇒ ζ2 =

α2 + αβ + β2

αβ
> 1 =⇒ ζ > 1.

Therefore there is no resonance/overshoot in the response (it is overdamped).

i. From above reasoning, sketch is as follows: [3]

ii. From above analysis, frequency response of G has gain of 1 at zero frequency,
monotonically decreasing thereafter. Therefore the steady state outflow rate can
never exceed the inflow rate for any realisable input, but may transiently (e.g.
input abruptly shut off). [5]
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(c) i. Block diagram (NB, students who place k on the feedback path will also get full
marks): [3]

ii. For diagram showm, New CLTF is kG
1+kG

. Plugging in expression for G:

kG

1 + kG
=

k αβ
s2+(β+2α)s+αβ

1 + k αβ
s2+(β+2α)s+αβ

=
k αβ
s2+(β+2α)s+αβ

s2+(β+2α)s+αβ+kαβ
s2+(β+2α)s+αβ

=
kαβ

s2 + (β + 2α)s+ αβ + kαβ
.

The gain at zero frequency is therefore k
1+k

(or, alternatively, use final value
theorem as above). Thus the steady outflow rate becomes: [4]

f ss2 =
Ak

1 + k

Students who placed k on the feedback path will get full marks for a CLTF as
αβ

s2+(β+2α)s+αβ+kαβ
and a corresponding steady state as f ss2 = A

1+k
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SECTION B

4. (a-1) **Fourier Transform of x(t) = sgn(t)e−a|t|:**

The Fourier Transform of x(t) is given by:

X(ω) =

∫ ∞
−∞

x(t)e−jωtdt.

Breaking the integral into two parts for t > 0 and t < 0:

X(ω) =

∫ ∞
0

e−ate−jωtdt−
∫ 0

−∞
eate−jωtdt.

For t > 0: ∫ ∞
0

e−t(a+jω)dt =
1

a+ jω
.

For t < 0:

−
∫ 0

−∞
et(a−jω)dt = − 1

a− jω
.

Combining both terms:

X(ω) =
1

a+ jω
− 1

a− jω
= −2jω/(a2 + ω2).

Thus, the Fourier Transform is verified:

X(ω) =
−2jω

a2 + ω2
.

(a-2) **Magnitude and Phase Spectra:**

The magnitude spectrum is:

|X(ω)| = 2|ω|
a2 + ω2

.

The phase spectrum is:

∠X(ω) =

{
−π

2
, ω > 0,

+π
2
, ω < 0.
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Figure 1: Magnitude and Phase Spectra of X(ω) = −2jω/(a2 + ω2).

—

(b) Verification of Parseval’s Theorem for f(t) = e−a|t|

Given information

• f(t) = e−a|t| where a > 0

• We need to verify:
∫∞
−∞ |f(t)|2dt = 1

2π

∫∞
−∞ |F (ω)|2dω

• Hint:
∫∞
−∞

1
(1+x2)2

dx = π
2

Left-Hand Side (LHS)

Calculate |f(t)|2
|f(t)|2 = (e−a|t|)2 = e−2a|t|

Set up the LHS integral ∫ ∞
−∞
|f(t)|2dt =

∫ ∞
−∞

e−2a|t|dt

Split the integral at t = 0 ∫ 0

−∞
e2atdt+

∫ ∞
0

e−2atdt

Evaluate each integral

For
∫ 0

−∞ e
2atdt:

1

2a
e2at

∣∣∣∣0
−∞

=
1

2a
(1− 0) =

1

2a

For
∫∞

0
e−2atdt:

− 1

2a
e−2at

∣∣∣∣∞
0

= − 1

2a
(0− 1) =

1

2a
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Sum the results

LHS =
1

2a
+

1

2a
=

1

a

Right-Hand Side (RHS)

Step 1: Calculate the Fourier Transform F(ω)

F (ω) =

∫ ∞
−∞

e−a|t|e−iωtdt

Split the integral:

F (ω) =

∫ 0

−∞
eate−iωtdt+

∫ ∞
0

e−ate−iωtdt

Evaluate:

F (ω) =
1

a+ iω
+

1

a− iω
=

2a

a2 + ω2

Step 2: Calculate |F (ω)|2

|F (ω)|2 =

(
2a

a2 + ω2

)2

=
4a2

(a2 + ω2)2

Step 3: Set up the RHS integral

1

2π

∫ ∞
−∞
|F (ω)|2dω =

1

2π

∫ ∞
−∞

4a2

(a2 + ω2)2
dω

Step 4: Simplify the integral
2a2

π

∫ ∞
−∞

1

(a2 + ω2)2
dω

Step 5: Substitute x = ω
a

2a2

π
· 1

a

∫ ∞
−∞

1

(1 + x2)2
dx

Step 6: Use the given hint
2a

π
· π

2
= a

Step 7: Simplify

RHS =
1

a

Conclusion

We have shown that both the LHS and RHS evaluate to 1
a
, thus verifying the relation:∫ ∞

−∞
|f(t)|2dt =

1

2π

∫ ∞
−∞
|F (ω)|2dω =

1

a
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This relation is a specific case of Parseval’s theorem, which states that the energy of a
signal in the time domain equals the energy of its Fourier transform in the frequency
domain.

(c) Using the Convolution Theorem, we evaluate the convolution of two signals in the
frequency domain:

x(t) = sgn(t)e−a|t|, h(t) = u(t)− u(t− T )

where u(t) denotes the unit step function.

Step 1: Compute Fourier Transforms of x(t) and h(t) For x(t) = sgn(t)e−a|t|: From
previous results, the Fourier Transform is:

X(ω) =
−2jω

a2 + ω2

For h(t) = u(t)−u(t−T ): This is a rectangular pulse of duration T . Its Fourier Transform
is:

H(ω) =
1− e−jωT

jω

Step 2: Apply the Convolution Theorem

The convolution y(t) = x(t) ∗ h(t) in the frequency domain becomes:

Y (ω) = X(ω)H(ω) =
−2jω

a2 + ω2
· 1− e−jωT

jω
=
−2(1− e−jωT )

a2 + ω2

Step 3: Compute Inverse Fourier Transform

Break Y (ω) into two terms:

Y (ω) =
−2

a2 + ω2
+

2e−jωT

a2 + ω2

Using the Fourier Transform pair 2a
a2+ω2 ↔ e−a|t|, we find:

First term:

F−1

{
−2

a2 + ω2

}
= −1

a
e−a|t|

Second term (e−jωT → time shift):

F−1

{
2e−jωT

a2 + ω2

}
=

1

a
e−a|t−T |

Combine results:

y(t) =
1

a

(
e−a|t−T | − e−a|t|

)
Step 4: Case Analysis
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The solution simplifies for different ranges of t: For t < 0:

y(t) =
1

a

(
ea(t−T ) − eat

)
For 0 ≤ t < T :

y(t) =
1

a

(
e−a(T−t) − e−at

)
For t ≥ T :

y(t) =
1

a

(
e−a(t−T ) − e−at

)
Final Result

y(t) =
1

a

(
e−a|t−T | − e−a|t|

)
5. (a) (a.i) The original frequency in Hz is:

f =
2000π

2π
= 1000 Hz

(a.ii) The Nyquist frequency is:

fNyquist =
fs
2

=
1500

2
= 750 Hz

(a.iii)

• Comparison: Original frequency = 1000 Hz, Nyquist frequency = 750 Hz.
Since 1000 Hz > 750 Hz, aliasing occurs.

• Calculation: Observed frequency due to aliasing:

fobserved = fs − foriginal = 1500− 1000 = 500 Hz

• Explanation: The reconstruction filter (cutoff = 750 Hz) cannot resolve fre-
quencies above 750 Hz. The aliased frequency folds back into the range [0, 750 Hz],
resulting in 500 Hz.

(b) DFT The DFT is given by the formula:

X[k] =
N−1∑
n=0

x[n]e−j
2π
N
kn, k = 0, 1, 2, . . . , N − 1

—

Calculate Each X[k]

**For k = 0:**

X[0] =
3∑

n=0

x[n]e−j
2π
4

(0)n

Simplify:
= 1 + 2 + 0 + (−1)
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Evaluate:
X[0] = 2

—

**For k = 1:**

X[1] =
3∑

n=0

x[n]e−j
2π
4

(1)n

Substituting each term:

= 1 + 2e−j
π
2 + 0 + (−1)e−j

3π
2

Evaluate each exponential:

e−j
π
2 = −j, e−jπ = j

Substituting:
= 1 + 2(−j) + 0 + (−1)j

Simplify:
X[1] = 1− 3j

—

**For k = 2:

X[2] =
3∑

n=0

x[n]e−j
2π
4

(2)n

Simplify each term:
= 1 + 2e−jπ + 0 + (−1)e−j3π

Evaluate:
e−jπ = −1, e−j3π = −1

Substituting:
= 1 + 2(−1) + 0 + (−1)(−1)

Simplify:
X[2] = 1− 2 + 1 = 0

—

**For k = 3:**

X[3] =
3∑

n=0

x[n]e−j
2π
4

(3)n

Simplify each term:
= 1 + 2e−j

3π
2 + 0 + (−1)e−j

9π
2

Evaluate:
e−j

3π
2 = j, e−j

9π
2 = −j

Substituting:
= 1 + 2(j) + 0 + (−1)(−j)
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Simplify:
X[3] = 1 + 3j

—

The DFT coefficients are:

X[k] = {2, 1− 3j, 0, 1 + 3j}

(b) (i) Recall that the Fourier transform of cos(2πf0t) is 1
2
[δ(f−f0)−δ(f+f0)]. Thus

the Fourier transform of m(t) = 2 cos(1000πt)− cos(2000πt) is [3]

δ(f − 500) + δ(f + 500) − 1

2
[δ(f − 1000) + δ(f + 1000)].

(ii) The modulation factor β = ∆f
W

, where W is the signal bandwidth and ∆f =
kf max|m(t)| is the frequency deviation. The maximum absolute value of m(t)
is 3. This can be seen either by inspection (say by observing that m(t) =
−3 at t = 1/1000)) or by differentiating and setting m′(t) = 0. Therefore,
∆f = 3000 · 3 = 9000. From part (b)(i), the signal bandwidth is W = 1000
Hz. Therefore. β = ∆f

W
= 9. [5]

By Carson’s rule, the bandwidth of the FM signal is approximately 2(1+β)W =
20kHz.

(iii) To recover m(t) from the FM signal, we can use a differentiator followed by an
envelope detector. Indeed, differentiating s(t), we obtain

s′(t) =
ds(t)

dt
= 2π(fc + kfm(t)) cos

(
2πfct + 2πkf

∫ t

0

m(u)du

)
.

Since fc � kf max|m(t)|, we can use a standard AM-style envelope detector to
recover m(t) from s′(t). The differentiator can be implemented via a filter with
frequency response H(f) = j2πf . [5]
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6. (a) The rate of transmission is 1/T = 1000 bits/s. [2]

(b) From the duality theorem (Information databook), we know that the Fourier trans-
form of p(t) = 1√

T
sinc

(
πt
T

)
is a rectangular function (in frequency) given by: [5]

P (f) =

{√
T , − 1

2T
≤ f ≤ 1

2T

0, otherwise .

(An answer in terms of P (ω) is also fine.) Therefore, the baseband bandwidth of
xb(t) is 1

2T
(since for a fixed sequence of symbols Xb(f) =

(∑
kXke

−j2πfkT
)
P (f)).

Hence the passband bandwidth of x(t) is 1
T

= 10kHz.

(c) (i) The block diagram is shown below. [5]

Low-pass
y(t)

S X filter Y

/ G(f) Yp(t)

cos(enfet)

t =mT

Matched filter Y
Yy(t) Y

h(t)= pl - t)
> v(mT)

The low-pass filter H(f) has constant gain for f ∈ [− 1
2T
, 1

2T
] and a cutoff

frequency that is a bit larger (say 1
T

to allow for a roll-off, enablling practical
implementation). The impulse response of the matched filter is h(t) = p(−t) =

1√
T

sinc(πt/T ).

(ii) The optimum decision rule is X̂m = A if Ym ≥ A/2, and X̂m = 0 otherwise. [4]
The probability of decision error is

Pe = P (X = 0)P (Y ≥ A/2 | X = 0) + P (X = A)P (Y < A/2 | X = A)

=
1

2
P (N ≥ A/2) +

1

2
P (N < −A/2)

= P (N ≥ A/2) = Q

(
A

2σ

)
= Q

(√
A2

4σ2

)
.

(iii) For a {0, A} constellation, the average energy per bit is A2/2. Therefore

Pe = Q

(√
Eb
2σ2

)
. Using the approximation, we have Pe ≈ 1

2
exp(−Eb/(4σ2)).

Setting this to 0.01, we obtain Eb/σ
2 = 4 ∗ ln 50 = 15.65, which is 11.95dB. [4]

(iv) The probability of each symbol being detected in error in 0.01 (since the snr is
the same as in part (iii)). The Hamming code can correct up to one detection
error in each block of 7 symbol, so the probability that an information bit is
decoded in error is

pHamming error = 1−
(

7

0

)
(0.99)7 −

(
7

1

)
(0.99)6(0.01) = 0.002.
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With a (7, 4) Hamming code, we need 7 binary symbols to transmit 4 infor-
mation bits. Therefore, the effective transmission rate is Reff = 4

7
1
T

= 4000
7

=
571.43 bits/second. [5]
Therefore, with the Hamming code the probability of an information bit being
decoded wrongly is smaller by a factor of 5 compared to the uncoded case, but
the effective transmission rate is 4

7
th of the uncoded system.

T O’Leary, F Mancini, R. Venkataramanan

7 February 2025
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