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EGT2
ENGINEERING TRIPOS PART IIA

Monday 24 April 2023 9.30 to 12.40

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book
Attachments:
• Incompressible Flow Data Card (2 pages);
• Boundary Layer Theory Data Card (1 page);
• 3A1 Data Sheet for Applications to External Flows (2 pages).

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) A cylinder with radius 𝑎 is placed in a flow at speed 𝑈 in the positive 𝑥-
direction. The cylinder encloses circulation Γ that induces flow in the anticlockwise
𝜃-direction, where 𝜃 is the angle made with the 𝑥-axis. Derive an expression for the
complex potential for this flow. [20%]

(b) Hence, or otherwise, show that stagnation points are situated at

sin 𝜃 =
Γ

4𝜋𝑎𝑈

[20%]

(c) The 2D cylinder in Fig. 1(a) is centred in the complex 𝑧-plane at 𝑧 = 𝑐 = 𝑐𝑟 + i𝑐𝑖
and passes through the point 𝑧 = 1. Under the transformation 𝜁 = 𝑧 + 𝑧−1, this cylinder
maps to the Joukowski aerofoil shown in Fig. 1(b). Sketch the streamlines that would be
observed around the Joukowski aerofoil if it were moved leftwards horizontally at speed
𝑈 through a stationary fluid. [20%]

(d) Derive an expression for the lift of this aerofoil in terms of 𝑐𝑖, 𝜌, and 𝑈, where 𝜌 is
the density of the fluid. [40%]

Fig. 1
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2 (a) A 3D sphere of radius 𝑎 moves in the positive 𝑥-direction at speed 𝑈 through
a stationary inviscid fluid with density 𝜌. Show that the velocity potential in the stationary
frame is:

𝜙 = −𝑈 𝑎3

2𝑟2 cos 𝜃

where the origin is located at the instantaneous centre of the sphere, the radial co-ordinate,
𝑟, is the distance to this origin, and 𝜃 is the angle made with the 𝑥-axis. [20%]

(b) If𝑈 varies with time, show that the pressure on the surface of the sphere is given by:

𝑝

𝜌
= 𝑘 − 1

2
𝑈2

(
cos2 𝜃 + 1

4
sin2 𝜃

)
+ 1

2
¤𝑈𝑎 cos 𝜃

where 𝑘 is a constant. [30%]

(c) Stating all your assumptions, calculate the acceleration of a spherical air bubble
starting from rest in water in the presence of gravity. [50%]
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3 An incompressible fluid between two infinite plates is rotating around an axis
perpendicular to the plates, as shown in Fig 2. The plates move apart, creating a steady
axisymmetric velocity field (𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧) with 𝑢𝑧 = 2𝛼𝑧, where 𝑧 is the distance from the
mid-point between the plates and 𝛼 is a positive constant. The continuity equation in
radial polar coordinates is:

1
𝑟

𝜕 (𝑟𝑢𝑟 )
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝜃

𝜕𝜃
+ 𝜕𝑢𝑧

𝜕𝑧
= 0

(a) Derive an expression for the radial velocity, 𝑢𝑟 . [20%]

(b) The vorticity equation is

𝐷𝝎

𝐷𝑡
= (𝝎 · ∇)u + 𝜈∇2𝝎

The vorticity is unidirectional, 𝝎 = (0, 0, 𝜔𝑧), and depends only on 𝑟 . Show that the
vorticity equation becomes

𝛼𝑟
d𝜔𝑧

d𝑟
+ 2𝛼𝜔𝑧 +

𝜈

𝑟

d
d𝑟

(
𝑟

d𝜔𝑧

d𝑟

)
= 0

Given that the steady solution is 𝜔𝑧 = 𝜔0 exp(−𝛼𝑟2/(2𝜈)), identify each term physically
and describe how the competing phenomena in the flow keep the flow steady. [50%]

(c) The plates are abruptly brought to rest. By considering the radial pressure gradient
in the flow, describe the flow in the boundary layers if the plates do not rotate. [30%]

Fig. 2
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4 Consider fully developed flow between parallel plates distance 2ℎ apart, as sketched
in Fig. 3. The fluid has density 𝜌 and kinematic viscosity 𝜈. The reduced pressure gradient,
d(𝑝/𝜌)/d𝑥 = 𝐺, is constant. The mean velocity across the channel is𝑉 and the wall shear
stress is 𝜏𝑤 .

(a) For a laminar flow, express the velocity profile 𝑢(𝑦) in term of 𝐺 and 𝜈. [20%]

(b) Suppose the flow is turbulent.

(i) Assume that the logarithmic-law correlates the local mean velocity 𝑢(𝑦)
across the whole channel. Deduce a relation between 𝑉 and the friction velocity
𝑢∗ =

√︁
𝜏𝑤/𝜌. [30%]

(ii) The friction factor 𝑓 is defined such that𝑉/𝑢∗ = (8/ 𝑓 )1/2. Establish a relation
between 𝑓 and the Reynolds number Re = 2ℎ𝑉/𝜈. [20%]

(iii) Express the ratio between the mean velocity, 𝑉 , and the maximum velocity,
𝑢max, in term of 𝑓 . [20%]

(c) Sketch the velocity profiles of the laminar and turbulent flows, and discuss the main
differences between these profiles. [10%]

Fig. 3
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5 Consider a turbulent boundary layer in a zero pressure gradient flow as sketched in
Fig. 4. Let 𝑢 be the mean velocity parallel to the wall, 𝜏𝑤 the wall shear stress and 𝑈

the velocity at the edge of the outer layer (𝑦 = 𝛿). The friction velocity 𝑢∗ is defined as
𝑢∗ =

√︁
𝜏𝑤/𝜌, where 𝜌 is the fluid density.

(a) Sketch the profiles of the laminar and turbulent shear stresses and discuss their main
characteristics. [20%]

(b) In a region quite close to the wall, it can be assumed that the local flow has no
information about the free-stream velocity, 𝑈, and the boundary layer thickness, 𝛿.

(i) Use dimensional analysis to explain why the velocity profiles collapse
according to the “law of the wall” scaling of the form

𝑢

𝑢∗
= 𝑓

(
𝑦𝑢∗

𝜈

)
where 𝑓 is some function. [10%]

(ii) Very close to the wall, the turbulent shear stress is negligible. Deduce the law
of the wall in this region. What name is given to this region? [20%]

(iii) Further away from the wall, the velocity profile is dominated by the turbulent
shear stress. Use dimensional analysis to simplify the law of the wall in this region. [20%]

(c) In Prandtl’s mixing-length model, the turbulent shear stress is modelled via the
turbulent viscosity 𝜈𝑇 (𝑦):

−𝑢′𝑣′ = 𝜈𝑇
d𝑢̄
d𝑦

and 𝜈𝑇 is expressed as the product of the friction velocity 𝑢∗ and a lengthscale 𝑙𝑚:

𝜈𝑇 = 𝑢∗𝑙𝑚

where 𝑙𝑚 varies linearly with 𝑦. Assuming that the turbulent stress is dominant and the
shear stress is nearly constant, deduce a law of wall and discuss its relation with (b) (iii). [30%]
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Fig. 4
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6 An aircraft has high-lift devices deployed over part of its wing. The effect can be
modelled by an extension of the effective chord, resulting in the wing planform shown in
Fig. 5. The quarter-chord line is straight along the whole of the wing. The wing is to be
modelled by two horseshoe vortices.

(a) Sketch a suitable horse-shoe vortex system. [20%]

(b) Assuming that the local lift coefficient is the same everywhere along the wing and
that the aircraft is in steady flight, express the circulation of each horseshoe vortex as a
function of the air density, 𝜌, aircraft weight, 𝑊 , flight speed, 𝑈, and wing semi-span, 𝑏. [20%]

(c) Calculate the downwash at the tailplane (marked by P) located a distance 𝑏 behind
the quarter-chord line, as shown in Fig. 5. [20%]

(d) The horseshoe-vortex model assumes a constant local lift coefficient.

(i) Sketch the resulting wing loading (the local lift along the span), together with
a more realistic wing-loading distribution. [20%]

(ii) Based on your sketch, where would you expect the wing to stall first? [10%]

(iii) What could be done to alleviate the danger of stall in this area? [10%]
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Fig. 5
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7 A model gliding aircraft of mass 1 kg is in steady flight at a speed of 20 ms−1 in air
with density 1.2 kgm−3. It features an elliptic untwisted wing of 0.1 m chord and 0.8 m
span. Ignoring any lift or downforce from the fuselage and tailplane, use lifting line theory
to determine:

(a) the angle of attack; [30%]

(b) the viscous drag if the glide slope is 1/15; [40%]

(c) the maximum lift-to-drag ratio that can be achieved by the wing if it is assumed that
the viscous drag contribution is independent of incidence. [30%]
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8 (a) By referring to the main drag mechanisms, briefly explain what is meant by
an aerodynamically ‘bluff body’. [10%]

(b) Sketch typical inviscid and viscous streamlines and surface pressures about a simple
generic bluff body. [20%]

(c) Use the sketches from (b) to explain why bluff body drag is dominated by one
particular mechanism. [25%]

(d) What are the main parameters affecting the drag coefficient of a bluff body? [10%]

(e) What are the options for reducing the drag coefficient of bluff bodies? [15%]

(f) Which measures for bluff body drag reduction are used in passenger cars? [20%]

END OF PAPER
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1. (d) 4𝜋𝜌𝑈2𝑐𝑖
2. (c) 2𝑔

4. (b) (iii) 𝑉
𝑈𝑚𝑎𝑥

=

(
1 + 1

𝜅

(
𝑓
8

) 1
2
)−1

5. (b) (ii) 𝑢
𝑢★

=
𝑦𝑢★

𝜈

(b) (iii) 𝑢
𝑢★

= 1
𝜅 ln

(
𝑦𝑢★

𝜈

)
+ 𝐵

6. (c) 3.32 Γ
𝜋𝑏

7. (a) 7.1◦

(b) 0.46 N
(c) 16.3
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