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EGT2
ENGINEERING TRIPOS PART IIA

Monday 22 April 2024 9.30 to 12.40

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book
Attachments:
• Incompressible Flow Data Card (2 pages);
• Boundary Layer Theory Data Card (1 page);
• 3A1 Data Sheet for Applications to External Flows (2 pages).

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 The velocity potential for 2D small amplitude sloshing motion of an inviscid fluid
with equilibrium depth ℎ in a container of width 𝜋𝑎, as shown in Fig. 1, is given by:

𝜙(𝑥, 𝑧, 𝑡) = cosh
(
𝑧 + ℎ

𝑎

)
sin

( 𝑥
𝑎

)
𝑓 (𝑡)

where the function 𝑓 (𝑡) will be derived later. The free surface is located at 𝑧 = 𝜁 (𝑥, 𝑡),
where

𝜁 = 𝐴 sin
( 𝑥
𝑎

)
sin(𝜔𝑡)

(a) Show that this velocity potential satisfies continuity, as well as the kinematic
boundary conditions on the sides of the container. [20%]

(b) Sketch contours of the velocity potential 𝜙(𝑥, 𝑧) for 𝑓 (𝑡) = 1. Also sketch the
corresponding streamlines. [30%]

(c) For small perturbations, the kinematic boundary condition at the surface is that the
vertical velocity, 𝑤, satisfies 𝑤 = 𝜕𝜁/𝜕𝑡, evaluated at 𝑧 = 0. Use this boundary condition
to derive an expression for 𝑓 (𝑡). [10%]

(d) The dynamic boundary condition at the free surface is 𝜕𝜙/𝜕𝑡+𝑔𝜁 = 0, where 𝑔 is the
acceleration due to gravity. This is derived from the unsteady Bernoulli equation. What
does this boundary condition represent physically? By applying this boundary condition
(evaluated at 𝑧 = 0) to your previous answers, show that 𝜔2 = (𝑔/𝑎) tanh(ℎ/𝑎). What
does 𝜔 represent? What can you infer about how to transport a glass of water? [40%]

Fig. 1
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2 (a) The streamfunction of an inviscid flow with free stream velocity 𝑈 around a
cylinder with radius 𝑎 is:

𝜓 = 𝑈 sin 𝜃

(
𝑟 − 𝑎2

𝑟

)
where (𝑟, 𝜃) are cylindrical polar coordinates. Show that this satisfies all the required
boundary conditions. [20%]

(b) The free stream fluid is hot. In order to thermally protect the cylinder, cool fluid
with the same density is forced radially through the surface of the cylinder. The bleed
velocity, 𝑚, is uniform along the surface of the cylinder. Show that this can be modelled
by a source at the origin and calculate the source strength. Show that the width of the cool
fluid stream far downstream is 2𝜋𝑎𝑚/𝑈. [20%]

(c) Write down the streamfunction of this flow and calculate its value on the stagnation
streamline far upstream. Sketch the streamlines of this flow when 𝜋𝑚/𝑈 < 1. [20%]

(d) Define 𝛼 = 𝜋 − 𝜃, such that 𝛼 is the angle from the front of the cylinder. Derive an
expression for the radial position of the stagnation streamline as a function of 𝛼. You may
find it helpful to define 𝜆/𝑎 = (𝑚/2𝑈) (𝛼/sin𝛼). [20%]

(e) What is the closest distance between the hot fluid and the cylinder when 𝑚 � 2𝑈? [20%]
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3 For this question, you will need to use the error function, which is shown in Fig. 2.
This is is proportional to the integral of a Gaussian:

erf
(𝑥
2

)
=

1
√
𝜋

∫ 𝑥

0
exp

(
−𝜉

2

4

)
d𝜉

A semi-infinite stationary fluid is bounded by an infinitely long flat plate at 𝑦 = 0. At
𝑡 = 0, the plate starts to move in the 𝑥-direction with constant speed 𝑈.

(a) Starting from the Navier–Stokes equation,

𝐷u
𝐷𝑡

= −1
𝜌
∇𝑝 + 𝜈∇2u

show, with reasoning, that the 𝑥−velocity, 𝑢, satisfies:

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑦2 [20%]

(b) By expressing 𝑢(𝑥, 𝑦) as a function of a similarity variable 𝜉 = 𝑦(𝜈𝑡)−1/2, derive
the following ordinary differential equation for 𝑢(𝜉):

2𝑢′′ + 𝜉𝑢′ = 0 [40%]

(c) By applying suitable boundary conditions, derive a general expression for 𝑢(𝑦, 𝑡). [20%]

(d) At 𝑡 = 𝑇 , the plate stops moving. Explaining your reasoning, write down an
expression for 𝑢(𝑦, 𝑡) for 𝑡 ≥ 𝑇 . [20%]
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-1

0

1

Fig. 2
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4 Consider a steady incompressible flow in a rotational frame with a uniform angular
velocity 𝛀 = (0, 0, Ω) in the Cartesian coordinates (𝑥, 𝑦, 𝑧). The momentum equation
relative to this frame is

u · ∇u + 2𝛀 × u = −1
𝜌
∇𝑝 + 𝜈∇2u

where u denotes the fluid velocity relative to the rotating frame and 𝑝 the reduced pressure,
which contains the centrifugal term. Suppose that the flow is composed of an inviscid
free stream rotating about the 𝑧-axis, and a boundary layer near 𝑧 = 0. Consider the case
where the inertia term, u · ∇u, is negligible compared with the Coriolis term, 2𝛀 × u.

(a) Let 𝑈 and 𝐿 denote typical scales of velocity and length of the flow. Under which
condition is the inertia term negligible? [10%]

(b) The inviscid flow in the free stream is a uniform flow with velocity 𝑢0 in the 𝑥-
direction. Associated with 𝑢0 is a pressure field 𝑝0 with uniform pressure gradient ∇𝑝0.
Calculate the components of this pressure gradient. [10%]

(c) The velocity components in the boundary layer are denoted (𝑢, 𝑣, 𝑤). Use continuity
to deduce that 𝑤 = 0 for the special solution in which the velocity field depends only on 𝑧,
i.e. 𝑢 = 𝑢(𝑧) and 𝑣 = 𝑣(𝑧). [10%]

(d) In the boundary layer, 𝜕2u/𝜕𝑥2 and 𝜕2u/𝜕𝑦2 are negligible compared with 𝜕2u/𝜕𝑧2.
Write down the components of the momentum equation for 𝑢 and 𝑣. [10%]

(e) In the boundary layer, the pressure is independent of 𝑧, hence 𝜕𝑝/𝜕𝑥 = 𝜕𝑝0/𝜕𝑥 and
𝜕𝑝/𝜕𝑦 = 𝜕𝑝0/𝜕𝑦. Deduce two ordinary differential equations for 𝑢 and 𝑣, in which the
pressure terms have been eliminated. [20%]

(f) Define a complex variable 𝑓 = 𝑢 − 𝑢0 + 𝑖𝑣. Deduce a second order equation for 𝑓

and find the general solution for 𝑓 . [30%]

(g) What are the boundary conditions for 𝑓 at 𝑧 = 0 and 𝑧 = +∞? Use these conditions
to determine 𝑢 and 𝑣. [10%]
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5 Consider a fully developed turbulent flow in a circular pipe. Let 𝜌 be the density of
the fluid, 𝜈 be the kinematic viscosity and 𝑉 be the average velocity in the pipe.

(a) The Darcy friction factor 𝑓 is defined as

𝑓 =
d𝑝/d𝑥

1
2𝜌𝑉

2/𝐷

where d𝑝/d𝑥 is the pressure gradient and 𝐷 is the diameter of the pipe. Express 𝑓 in
terms of the wall shear stress 𝜏𝑤 . [10%]

(b) Assume that the logarithmic-law of boundary layer theory can model the local mean
velocity 𝑢(𝑟) all the way across a circular pipe of radius 𝑅 with centreline at 𝑟 = 0:

𝑢(𝑟)
𝑢∗

=
1
𝜅

ln
(
𝑢∗(𝑅 − 𝑟)

𝜈

)
+ 𝐵

where 𝑢∗ =
√︁
𝜏𝑤/𝜌 is the friction velocity, and 𝜅 and 𝐵 are two dimensionless constants.

Deduce an equation between the mean velocity 𝑉 and the friction velocity 𝑢∗. You may
use ∫

𝑦 ln(𝑦) d𝑦 =
1
2
𝑦2 ln(𝑦) − 1

4
𝑦2 [40%]

(c) Establish a relation between the Darcy friction factor 𝑓 and the Reynolds number
Re = 𝑉𝐷/𝜈. [20%]

(d) Calculate the ratio of the maximum velocity 𝑢max to the mean velocity 𝑉 in terms
of 𝑓 and 𝜅. [20%]

(e) Describe the main differences between laminar and turbulent velocity profiles of
flow in a pipe. [10%]
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6 An aerofoil has the following camberline:

𝑦

𝑐
=

1
5

[
𝑥

𝑐
−

(𝑥
𝑐

)2
]

0 ≤ 𝑥

𝑐
< 0.5

𝑦

𝑐
=

1
10

[
1 − 𝑥

𝑐

]
0.5 ≤ 𝑥

𝑐
< 1.0

(a) Use thin aerofoil theory to determine the zero-lift angle of attack (in degrees). [80%]

(b) At what angle of attack (in degrees) would you expect the maximum adverse pressure
gradient along the aerofoil surface to be a minimum? Explain your answer with sketches. [20%]
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7 An aircraft with weight 𝑊 is in steady flight at speed 𝑉 through air with density 𝜌.
The aircraft has a wing with semi-span 𝑠 and aspect ratio 𝐴𝑅.

(a) Determine the induced drag coefficient from lifting line theory as a function of 𝑊 ,
𝑉 , 𝜌, 𝑠 and 𝐴𝑅. You may assume that the wing loading is elliptical. [10%]

(b) Using the simple horseshoe vortex model, estimate the induced drag coefficient.
Explain why this result differs from that of part (a). [30%]

(c) Show that a modified horseshoe vortex model that uses the effective span 𝑠′ and
an effective downwash angle 𝑤′ improves the estimate of the induced drag coefficient.
Express 𝑠′ and 𝑤′ as functions of 𝑊 , 𝑉 , 𝜌, and 𝐴𝑅. [30%]

(d) Compare the relationships between the induced drag and lift coefficients for (i) the
lifting line model and (ii) the modified horseshoe vortex model used in (c). [20%]

(e) Which aspects of the wing flow are better described by the modified horseshoe
vortex model, and which weaknesses remain? [10%]
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8 (a) A passenger vehicle with a frontal area of 2.5 m2 has a radiator with an
effective open area of 0.1 m2. While on a stationary test rig at a typical power output, the
engine requires an average coolant flow rate of 0.05 m3s−1 across the radiator.

(i) Using the momentum equation applied to a suitable control volume, estimate
the percentage drag contribution due to this radiator while driving with the same
power output. The effective velocity of the coolant air flow is assumed to be 20% of
the vehicle speed. [25%]

(ii) How can the drag due to the radiator be reduced? How much of the drag
calculated in (i) would you expect to remove at motorway speeds? [25%]

(b) Explain briefly, with the aid of sketches, how trailer side-skirts affect the drag of
articulated heavy goods vehicles. [25%]

(c) Early road speed record vehicles often featured rear vertical fins. Explain, with the
aid of sketches, why this was found to be necessary. [25%]

END OF PAPER
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1. (b) sketch cosh, then sin, then combine
1. (c) 𝑓 (𝑡) = 𝜔𝐴 cos(𝜔𝑡)/

(
1
𝑎 sinh ℎ

𝑎

)
2. (a) 𝑟 → ∞ and 𝑟 → 𝑎

2. (b) 2𝜋𝑎𝑚
2. (c) 𝜋𝑎𝑚

2. (e) 𝑚/(2𝑈)
3. (c) 𝑈

(
1 − erf

(
𝑦

2
√
𝜈𝑡

))
4. (f) 2Ω 𝑓 + i𝜈 𝑓 ′′ = 0
5. (b) 𝑉 = 𝑢∗

(
𝐵 + 1

𝜅

(
ln

(
𝑢∗𝑅
𝜈

)
− 3

2

))
5. (d) 𝑢𝑚𝑎𝑥

𝑉
= 1 + 3

4𝜅

(
𝑓
2

)1/2

6. (a) 5.47◦

6. (b) 0.782◦

8. (a) ≈ 5%
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