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EGT2
ENGINEERING TRIPOS PART IIA

Friday 25 April 2014 9.30to 12.30

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

Attachment: 3AT Data Sheet for Applications to External Flows (2 pages):
Boundary Layer Data Card (I page);

Incompressible Flow Data Card (2 pages).

Engineering Data Book

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 (a) Two-dimensional flow past the semi-infinite strut shown in Fig. | is to be
represented by superposition of the free stream, U, and a line source of strength m.
Find m interms of U and #A.

Fig. 1

[20%]

(b) The strut is now placed near a plane surface which is parallel to the oncoming
flow. Ifthe image source is at a distance 2/ from the surface, find (in terms of A):

(i)  the stagnation point location;
(ii) the distance between the strut and the surface. [40%]

(¢) A long cylindrical shape with a streamlined nose has its axis aligned with an
oncoming flow of speed U. lts effect is to be represented by a point source of strength

q.
(i)  Ifthe cylinder radius is R, whatis g ?

(iiy The body is now placed near a plane surface which is parallel to the
oncoming flow. The image source is at a distance H from the surface, on which
a boundary layer forms. Find the flow speed outside the boundary layer on the
streamwise line that passes directly under the source, and identify the regions
where separation might occur. (You may assume the boundary-layer thickness to
be negligible.) [40%]
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2 (a)  The equation governing vorticity, @, in a fluid with kinematic viscosity v,

do  _ e
E+u.Va)=a).Vu+ vV°o

where U is the fluid velocity vector. State the physical meanings of the component
terms in the above equation. [20%)]

(b) Explain how the classical boundary-layer approximations can be applied to
simplify the expression for vorticity in a two-dimensional flow. What is the direction of
the vorticity vector, relative to the streamwise direction and the surface normal? [40%)]

(¢)  An open-topped cylindrical vessel filled with fluid is spun steadily about its axis
until the contents are in a state of rigid-body rotation. The vessel is then stopped.

(i)  What is the direction of the vorticity vectors in the rigid-body fluid motion?

(i) Indicate, using sketches where appropriate, the direction of the vorticity
vectors in the boundary layer that starts to form on the base of the container once
it is stopped.

(iii) It is subsequently observed that debris on the base of the container drifts
radially inwards, implying corresponding fluid motion in that region. What is the
direction of the vorticity component associated with this motion? (You can
assume that the no-slip boundary condition has not yet had a significant effect on
the radial flow.)

(iv) Discuss qualitatively how the vorticity component identified in (iii) arises.  [40%)]
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3 An oceanographer analyses wave motion shown in Fig. 2 by assuming that the
flow is both incompressible and irrotational, and that perturbations associated with the
waves are small. The mean position of the ocean surface is at y = 0, and the water,
whose depth is effectively infinite, occupies y <0 .

Fig. 2

(a) Show that the two-dimensional velocity potentials given by

¢ - Re{ei((ut—kx)eky} and ¢ — Re{ei((ut—kx)e—ky}

with @ and k positive real, are valid solutions of Laplace's equation. [20%]

(b) Identify which of the two solutions in (a) is the physically relevant one. Justify
your answer. [20%]

(¢) The surface displacement in the y direction is given by

7, £) = Re{yoel* )

where yy is a constant. Find the velocity potential describing this fluid motion. (You
may assume that dr/0 ¢ is equal to the vertical fluid velocity component at y = 0.) [20%)]

(d) Find expressions for the horizontal and vertical components of velocity in the
water. Comment qualitatively on the form of the trajectories of the fluid particles in the
wave motion. [20%]

(e) The pressure at the water surface must be constant, at the atmospheric value. Use
this to find an expression for the wave speed. (Note: the small-perturbation assumption
implies that &y « 1, and that ¢|y-;,7 can be approximated as ¢f_vu~.‘o.) [20%]
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4 Consider a turbulent flow of an incompressible fluid of kinematic viscosity v
past a flat plate. The boundary layer thickness is &. At the outer edge of the boundary
layer, y =¢ and velocity u =U.

(a)  Assume that the logarithmic law

u 1 'y
—=—-]n(
v

u*  k

)+ 5

holds all the way across the boundary layer with £=0.41 and B=5.0. Here u* is the
friction velocity. Deduce a skin friction law for this flow relating the local skin friction
coefficient C’r and the Reynolds number Res=Ud/v.

[30%]
(b)  To avoid the algebra of the logarithmic law, assume now that the boundary layer
velocity profile is represented by w/U =(/8)"" for 7 =3y/6 <1 and u=U forn > 1.
Express the displacement thickness &, the momentum thickness @ and the shape
factor H interms of &. [30%)]

(c)  Assume further that the skin friction coefficient agrees with the experimentally

determined formula:
Cf = 0.02 Res V/

Given also that 6=0 at x=0, where x is the distance from the leading edge, and that
the laminar boundary layer is over a negligible portion of the plate, determine the
boundary layer thicknesses &, &, @ and the wall shear stress Ty, as a function of x . [40%)]
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5 Consider a two-dimensional high Reynolds number flow between two plane walls,
y =0 and y = x tane, there being a narrow slit at the origin through which fluid is
extracted. We assume that the flow divides into an essentially inviscid mainstream with
thin viscous boundary layers on the walls (see Fig. 3).
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Fig. 3

(a) Assume that the mainstream flow is purely radial, i.e., u=ur)e,. Show that the
inviscid equations of motion then demand that

u=-2,
r T

where Q is a positive constant. [10%]

(b) On the boundary y = 0, the external flow is U(x) = —Q/x. Consider a similarity
solution of the form

F=FQ)f(m, n=y/g(x)

to the boundary layer equations, where ¥ denotes the stream function. Show that the
mainstream boundary condition demands that F(x) = —cQg(x)/x , where ¢ is a constant,
and then, for convenience, choose ¢ to be 1. {20%]

(¢} Write down the boundary layer equation and calculate expressions for u, v,
dulox. duldy and duldy’ . [20%]

(d) Substitute the above expressions into the boundary layer equations to deduce a
differential equation relating f and g. [20%]

(e) Find the necessary conditions for the existence of a similarity solution and hence
deduce the differential equation for . What are the boundary conditions for /7 [30%]
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6 Figure 4 represents the horseshoe vortex structures, W1 and W2, of two
elliptically loaded airplanes flying in formation. Each airplane has wing span 2s and is
separated and offset by as and fs as shown.

as
fs
2s
2s
W1 W2
Fig. 4

(@) Using simple 3D lumped parameter modelling estimate the change in the

downwash on W2 due to the presence of W1 [40%]
(b)  Estimate the change in induced drag on W2 due to the presence of W1. [40%]
(¢) Comment on the result. [20%]
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z Consider classical 2D thin aerofoil theory.
(a) The two velocity components are expressed in general using
u="Ucosa+u' ;v =Usina+v’

where U is the free stream velocity, #’ and v’ perturbation velocities and o the
angle of attack. Show how these expressions are modified for the case of small
perturbations and hence derive the following expression for the local pressure
coefficient:

State clearly your approximations. [40%]

(b) Describe the physical basis used for modelling camber making clear, with
appropriate equations, how the camber slope is used, where the boundary conditions
come from and how the local aerofoil loading, Ac,, is derived. [30%]

(c) Describe the physical basis used for modelling thickness making clear, with
appropriate equations, how the thickness slope is used, where the boundary conditions

come from and how the local aerofoil pressure coefficient, ¢, , is derived. [30%]

8 (a) What is the ‘wind-averaged drag coefficient’ and why is this of particular
significance for long-haul heavy goods vehicles operating in the UK? [25%]

(b) On a typical heavy goods configuration, consisting of a towing vehicle and a
trailer, identify the 3 or 4 main sources of aerodynamic drag. [30%]

(¢) Wherever possible, give an example of how aerodynamic drag is minimised in
modern haulage vehicle design for each of the problem areas identified in (b). [25%]

(d) Give an example of an aerodynamic drag reduction strategy that is highly
successful in passenger cars but hardly used in heavy goods vehicles. Give reasons for
this discrepancy. {20%]

END of PAPER
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3A1 Data Sheet for Applications to External Flows

Aerodynamic Coefficients

For a flow with free-stream density, p, velocity U and pressure pe, :

Pressure coefficient: ¢, = !].’,,LE;_
sPU
¢ a i N/ .
Section lift and drag coefficients: ¢, = W, C, = W (section chord c)
spU%¢c pU%c
N . i drag (N i
Wing lift and drag coefficients: C; = —}l—f;t@ = —l—ég—(;—)- (wing area S)
LpU?s =~ pU*8
2 2
Thin Aerofoil Theory
Geometry Approximate representation
&y Ay
Y=Y (x) )/(X) %
~~~~~~~~~~~~~~~ S S CTTTY T TN
o & ””””” ‘}:’ ’ y !c
U v
Pressure coefficient: ¢, =xy /U
Pitching moment coefficient: ¢,, ={(momentabout x = 0) /% pU?c?
Coordinate transformation: x=c(l+cos@)/2=c¢ cos?(8/2)
Incidence solution: y =-2Ua 1 ﬂ_COSH , ¢, =2nma, ¢, =¢c, /4
sin@
~, : 1-cosf .
Camber solution: y=-U|gy— + 2 g, sinn@ |, where
sing Lo
1”( dy, 2”( dy,
r, = —f| - 2——=1d6, g, =—f| ~2-—==|cosnbdb
S i e e
& v &y & 7
¢ = ”(ge +"’§")» ¢y "":‘;{(gu +& *‘i’) = i*’g(gi +8;)



Glauert Integral

Ei .
cOs ng di = g S0 n
fccs:ﬁ -cos 8 sinf

7

Line Vortices

A straight element of circulation T" induces a
velocity at P of

Z—I—‘m:i-(cosa +cosfB)

perpendicular to the plane containing P and
the element.

Lifting-Line Theory
Spanwise circulation distribution: /irm\
{ y
-8 8
Aspect ratio: Ap = 45% 18
Wing lift: L= plU IT(y)dv
Ir
1 rdl(m)/dn
Downwash angle: a,y)= d
fnduced drag: D = ,onr( y)e, (y)dy
Fourier series for circulation: Iy =Us Y G, sinnf. with y = ~scos@

13 8y

Relation between lift and induced drag:
¢, =+ 5).,.”(;.,.,{."9 WhetE B m 3(5{3_) . 5( {7 ) .
nA (

# ) G,



Module 3A1
Boundary Layer Theory Data Card

Displacement thickness;

§* = /:c (1 - %) dy

Momentum thickness;

By U P A R
g'ﬂ g w=), )o@

Energy thickness;

% (U2 — u?)u o0 u\2\ u
bo= [ Py = [T (1= (m) il
o 0 Uiz o 0 N A /

Prandtl’s boundary layer equations (laminar flow);

Ju ] Ou 1 dp, . &u

Y o Vo 3 e e Y

dx y p dx oy?
Ou v

T
dr Oy

von Karman momentum integral squation;

& H+2,dU, 1, O

e g e 2 - e

dx U, de — pU: 2

Boundary layer equations for turbulent flow:

_ow  _ou ~-ldp v u
e + T~ = ——— e P
dx Dy p dx Oy dy?

-l
dr Oy






Module 3A1: Fluid Mechanics I

INCOMPRESSIBLE FLOW DATA CARD

Continuity equation Veu=0

Du

=-Vp+
D P+ Pg

Momentum equation (inviscid) po

D/ Dt denotes the material derivative, d/dt +u-V

Vorticity w =curl u
D
Vorticity equation (inviscid) —.% =w Vu

Dr
Kelvin's circulation theorem (inviscid) — 0, I'= fu -dl = f - dS

For an irrotational flow

velocity potential ¢ u=Ve¢ and V¢ =0

. 4 s = g 4
Bernoulli's equation for inviscid flow: L, —;—luf +gz+ 7;? = constant throughout flow field
p .

TWO-DIMENSIONAL FLOW

Streamfunction y Y dy e dy
' o
w22 I
" roe’ ’ or
Lift force Lift / unit length = pU(-I")

For an irrotational flow

complex potential F(z) F(z)= ¢+ iy is a function of z=x+iy

dr

e Y
dz



TWO-DIMENSIONAL FLOW (continued)

Summary of simple 2 - D flow fields

¢ (0 F(2) u
Uniform flow (x - wise) Ux Uy Uz u=U,v=0
Source at origin 7 inr et g R
2 2 27 T2t
: .. ucosf usin@ 2 ucos@ using
Doublet (x - wise) at origin - —_— s ©, = s Uy = ———r
(x ) & 20 2nr 2nz T m T
Vortex at origin LB -—Llnr —£lnz u =0,u, =—
2 2r 2n 2mr

THREE-DIMENSIONAL FLOW

Summary of simple 3 - D flow fields

¢ u
: . m m
Source at origin rye U, = e ug =0, u,=0
Doublet at origin (with 6 the ucos@ pcosf usin@ 0
- U, =——, U= -, Uy, =
angle from the doublet axis) Amr® T 2 O Am® T Y
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