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EGT2
ENGINEERING TRIPOS PART IIA

Monday 26 April 2021 9.00 to 12.10

Module 3A1

FLUID MECHANICS I

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet and at the top of
each answer sheet.

STATIONERY REQUIREMENTS
Write on single-sided paper.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed.
Attachments:
• Incompressible Flow Data Card (2 pages);
• Boundary Layer Theory Data Card (1 page);
• 3A1 Data Sheet for Applications to External Flows (2 pages).
You are allowed access to the electronic version of the Engineering Data Books.

10 minutes reading time is allowed for this paper at the start of
the exam.
The time taken for scanning/uploading answers is 30 minutes.

Your script is to be uploaded as a single consolidated pdf
containing all answers.
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1 (a) The complex potential for a stagnation flow is given as F(z) = 1
2 Az2. Express

the complex potential f (z) for a stagnation flow centred at the point z = c, where c > 0 is
real, and sketch the flow. [10%]

(b) The complex potential given by:

W(z) = f (z) + f (
a2

z̄
)

corresponds to the the flow of a complex potential f (z), which is perturbed by the presence
of a cylinder of radius a at the origin. The overline represents the complex conjugate.
Using this result, obtain an expression for the complex potential for the stagnation flow
centered at point z = c, perturbed by an added cylinder of radius a< c centred at the origin,
as a function of z. Show that for this specific case, |z| = a is a streamline. [20%]

(c) Show that the resulting potential and streamfunctions as a function of x and y are :

φ =
1
2

A
[
(1 + s2)(x2− y2) + 2c2−2c(1 + s)x

]
ψ = A(1− s)y [(1 + s)x− c]

where s = a2/(x2 + y2) . [30%]

(d) Obtain the velocity components ur and uθ at the surface of the cylinder. Sketch the
streamlines in the resulting flow, and indicate any stagnation points and singularities. [30%]

(e) Without attempting any calculations, explain how you would obtain the pressure on
the surface of the cylinder, and hence the forces on the cylinder. In which direction would
the resultant force act? [10%]
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2 Consider a 2D inviscid incompressible flow.

(a) Two vortices are located on the z−plane (z = x + iy), one at z = +a with circulation
−Γ and the other at z = −a with circulation +Γ, as shown in Fig. 1 (a). Determine the
velocity of the vortex pair. [20%]

(b) The sign of the circulation of the vortex at z = +a is changed, as shown in Fig. 1 (b).
Show that the pair rotates in a circular arc with angular velocity Γ/(4πa2). [20%]

(c) Consider n line vortices, each of circulation +Γ/n, spaced equally around a circle
of radius a.

(i) Find the resulting motion of the n line vortices. [40%]

(ii) Explaining your reasoning, sketch the y-direction velocity along the x−axis
as n→∞. [20%]

Fig. 1
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3 A steady, axisymmetric flow field in 3D is given as

u = −
1
2

kr er + kz ez

in cylindrical coordinates, where k is a real constant.

(a) Show that the flow field is irrotational and incompressible. [20%]

(b) Show that the streamlines are given by zr2 = C, where C is a constant. [25%]

(c) Starting from the general vorticity balance equation

Dω
Dt

= ω · ∇u

and the assumption that ω = ωz(r,z)êz , show that the equation admits solutions of the
type: ωz = Arαzα/2+1 , where α is a constant. [30%]

(d) Using the solution for α = 0, show that the circulation Γ around a streamtube that
has radius r0 when z = z0 is a constant along that streamtube. [25%]
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4 Consider a flat plate at zero incidence to an incompressible flow with free stream
velocity U0, density ρ, and viscosity µ, as shown in Fig. 2. The plate is porous, and fluid is
removed by suction with uniform speed V0 normal to the plate. A laminar boundary layer
develops and a fully-developed regime is reached where the velocity (u,v) and pressure p
are independent of x.

(a) Determine the vertical velocity v across the boundary layer. Hence integrate the
x-momentum equation to find u. [30%]

(b) From the result of part (a), calculate the displacement thickness δ∗ and the shear
stress at the wall τw. [20%]

(c) Take a control volume enclosing the boundary layer (the dotted line in Fig. 2) and
apply the steady flow momentum equation to find an expression for τw. Compare this to
the expression derived in part (b). [30%]

(d) Discuss the validity of the above two approaches when the boundary layer is
turbulent. Sketch the velocity profiles for laminar and turbulent boundary layers. [20%]

Fig. 2
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5 Consider the high-Reynolds-number flow from a slit at (x,y) = (0,0) discharging
between two walls at x = 0 and y = 0, as shown in Fig. 3. For this question, assume that
the flow can be divided into boundary layers along the walls and an inviscid main stream
with radial velocity ur = Q/r, where Q > 0.

(a) On the horizontal boundary y = 0, consider a similarity solution to the boundary
layer equation of the form

ψ = F(x) f (η), η = y/g(x)

where ψ denotes the streamfunction. Show that F(x) can be written as Qg(x)/x. [20%]

(b) Calculate expressions for u, v, ∂u/∂x, ∂u/∂y and ∂2u/∂y2. [20%]

(c) Substitute the above expressions into the boundary-layer equation to deduce a
differential equation relating f and g. [20%]

(d) Find the necessary conditions for the existence of a similarity solution and hence
deduce the differential equation for f . [20%]

(e) State the boundary conditions for f and discuss the validity of the solution. [20%]

x

y

o

u

Fig. 3
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6 An aircraft of weight W flying with constant horizontal velocity U at altitude h
is modelled by a simple horseshoe-vortex system with effective semi-span s. You may
assume that h� s and that h is sufficiently large that any changes in the horizontal velocity
at the wing can be neglected.

(a) Estimate the horizontal velocity induced on the ground directly underneath the
centre of the wing. Express your answer as a function of the horseshoe vortex
circulation Γ. [5%]

(b) Determine Γ as a function of W. [15%]

(c) By adopting an appropriate coordinate system, determine the maximum pressure
increase on the ground, ∆pmax, as a function of W and h. Explain your choice of
coordinate system and justify your assumptions. [45%]

(d) You may assume that the pressure difference on the ground varies with radial
distance r from the point directly under the centre of the wing as follows:

∆p = ∆pmax

(
1 +

( r
h

)2
)−3

2

Calculate the total force on the ground. Comment on the result. [35%]
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7 An aircraft in steady horizontal flight has a rectangular wing with a chord of
c = 4s/(3π), where s is the wing semi-span. To achieve a perfect elliptical lift distribution
the wing is twisted. The wing section is symmetrical.

(a) Express the total twist angle (the difference between the root and tip geometric
angles of attack) as a function of the maximum wing circulation Γ0, the flight speed U,
and s. [25%]

(b) If the aircraft flies at 50 m s−1, has a mass of 1000 kg, and has a semi-span of 5 m,
what is the angle of attack at the wing root? The density of air is 1.2 kg m−3. [25%]

(c) The wing is replaced with a tapered wing (taper ratio: 0.5) of the same area. What
is the reduction in the maximum wing twist? [25%]

(d) Comment on the stall behaviour of the two wing designs. [25%]
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8 (a) Identify four major sources of drag for articulated lorries. [10%]

(b) Discuss, with the aid of sketches, remedial actions for reducing drag from the
sources described in (a). Discuss any limitations due to design constraints. [55%]

(c) Figure 4 plots the measured drag coefficient, CD, against different slant angles, α,
of a retrofit lorry boat tail. Briefly suggest plausible flow regimes for regions (I-III) shown
in Fig. 4. [15%]

(d) Derive a simple expression for the energy savings that could be obtained for a
number, N, of lorries operating in a convoy. Express the saving as a function of ρ, U, A,
CD and R where ρ is the air density, U is the lorry velocity, A is the frontal projected area,
CD is the drag coefficient, and R is the the rolling resistance. What are the aerodynamic
factors that would limit energy savings? [10%]

(e) Describe the major areas where the aerodynamics of high-speed trains differ from
those of lorries. [10%]
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6 

the length of the vehicle because this would have exceeded the maximum legal length for 

such vehicles; instead lengths of boat-tail up to a full scale equivalent of two metres were 

tested, as suggested by a literature survey. This same survey suggested that the optimum boat-

tail angle was likely to lie around ten to fifteen degrees and so the range of angles tested was 

from five to twenty degrees. 

 
Figure 6 – Variation of boat-tail length 

 
Figure 7 – Variation of boat-tail angle 

Other parameters that were tested included the effect of only tapering in the sides or top of the 

boat-tail, blending the start of the boat-tail to the existing trailer surfaces with curvature and 

the effect of a spoiler. 

2.1.3 Results 

Several important results were found from the boat-tail testing. Figure 8, below, shows the 

variation in drag saving with boat-tail length for a boat-tail of angle ten degrees.  
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Figure 8 – Variation in drag saving with boat-tail length 
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Module 3A1: Fluid Mechanics I 
 

INCOMPRESSIBLE FLOW DATA CARD 
 
 

Continuity equation   ∇⋅u = 0  
 
 

Momentum equation (inviscid) ρ
Du
Dt

= −∇p + ρg  

 
D Dt   denotes the material derivative,  ∂ ∂t + u ⋅ ∇  

 
 
Vorticity    ω = curl u  
 
 
Vorticity equation (inviscid)  Dω

Dt
= ω ⋅∇u  

 
 

Kelvin's circulation theorem (inviscid) DΓ
Dt

= 0,   Γ = u∫ ⋅ dl = ω∫ ⋅ dS  

 
 
For an irrotational flow  

 
velocity potential φ   u =∇φ   and  ∇2φ  = 0 
 

Bernoulli's equation for inviscid flow:  

€ 

p
ρ

+ 1
2 u

2
+ gz +

∂φ
∂t

= constant   throughout flow field 

 
 
 

TWO-DIMENSIONAL FLOW 
 
 
Streamfunction ψ 

€ 

u =
∂ψ
∂y
, v = −

∂ψ
∂x

ur =
1
r
∂ψ
∂θ
, uθ = −

∂ψ
∂r

 

 
 
Lift force 

 
Lift / unit length = ρU(−Γ )

 
 
 
For an irrotational flow  

complex potential F(z)  

€ 

F(z) = φ + iψ  is a function of 

€ 

z = x + iy  
 

     

€ 

dF
dz

= u − iv  



TWO-DIMENSIONAL FLOW (continued) 
 
 

 

€ 

Summary of simple 2 - D flow fields

φ ψ F(z) u

Uniform flow (x - wise) Ux Uy Uz u =U,  v = 0

Source at origin m
2π

ln r m
2π

θ
m
2π

ln z ur =
m

2πr
,  uθ = 0

Doublet (x - wise) at origin −
µcosθ

2πr
µsinθ
2πr

−
µ

2πz
ur =

µcosθ
2πr2 ,  uθ =

µsinθ
2πr2

Vortex at origin Γ
2π

θ −
Γ

2π
ln r −

iΓ
2π

ln z ur = 0, uθ =
Γ

2πr
 

 
 
 

THREE-DIMENSIONAL FLOW 
 
 
 

€ 

Summary of simple 3 - D flow fields

φ u

Source at origin −
m

4πr
ur =

m
4πr2 ,     uθ = 0,    uψ = 0

Doublet at origin (with θ the 
angle from the doublet axis)

−
µcosθ
4πr2 ur =

µcosθ
2πr3 ,    uθ =

µsinθ
4πr3 ,    uψ = 0
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Boundary Layer Theory Data Card

Displacement thickness;

δ∗ =
∫ ∞

0

(
1− u

U

)
dy

Momentum thickness;

θ =
∫ ∞

0

(U−u)u
U2 dy =

∫ ∞

0

(
1− u

U

) u
U

dy

Energy thickness;

δE =
∫ ∞

0

(U2−u2)u
U3 dy =

∫ ∞

0

(
1−
( u

U

)2
)

u
U

dy

H =
δ∗

θ

Prandtl’s boundary layer equations (laminar flow);

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

d p
dx

+ν
∂ 2u
∂y2

∂u
∂x

+
∂v
∂y

= 0

von Karman momentum integral equation;

dθ
dx

+
H +2

U
θ

dU
dx

=
τw

ρU2 =
C′f
2

Boundary layer equations for turbulent flow;

u
∂u
∂x

+ v
∂u
∂y

= − 1
ρ

d p
dx
− ∂u′v′

∂y
+ν

∂ 2u
∂y2

∂u
∂x

+
∂v
∂y

= 0



3A1 Data Sheet for Applications to External Flows 
 
 

Aerodynamic Coefficients 
 
For a flow with free-stream density, ρ, velocity U and pressure ∞p : 
 

Pressure coefficient:  
2

2
1 U
ppcp

ρ
∞−

=  

 

Section lift and drag coefficients: ,)/(lift 
2

2
1 cU

mNcl
ρ

=  
cU
mNcd 2

2
1

)/( drag
ρ

=  (section chord c) 

 

Wing lift and drag coefficients: ,)(lift 
2

2
1 SU

NCL
ρ

=  
SU
NCD 2

2
1

)( drag

ρ
=  (wing area S) 

 
 

Thin Aerofoil Theory 
 
Geometry  Approximate representation 

 
 
Pressure coefficient: Ucp /γ±=  

Pitching moment coefficient: 22
2
1/)0about (moment  cUxcm ρ==  

Coordinate transformation: l = c(1+ cosφ) / 2, x = c(1+ cosθ ) / 2  

Incidence solution: γ (l) = −2Uα 1− cosφ
sinφ

, cl = 2πα, cm = cl / 4  

Camber solution: γ (l) = −U g0
1− cosφ
sinφ

+ gn sinnφ
n=1

∞

∑
$

%
&

'

(
) ,  where 

   ∫ ∫ "
#

$
%
&

'
−="

#

$
%
&

'
−=

π π

θθ
π

θ
π 0 0

0 cos2
2

,2
1

dn
dx
dy

gd
dx
dy

g c
n

c ; 

   or, equivalently:   −2 dyc
dx

= g0 + gn cosnθ
n=1

∞

∑  

  )(
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Glauert Integral 
 

 ∫ =
−

π

θ
θ

πφ
θφ

φ

o

n
d

n
sin

sin
 cos cos

 cos  

 
 

Line Vortices 
 

 

The Biot-Savart integral for a straight 
element of circulation Γ  gives a contribution 
to the velocity at P of  
       

          

€ 

Γ
4πd

(cosα + cosβ)  

 
perpendicular to the plane containing P and 
the element. 

 
 

Lifting-Line Theory 
 

Spanwise circulation distribution:  
 
 
 
 
Aspect ratio: SsAR /4 2=  

Wing lift: ∫
−

Γ=
s

s

dyyUL )(ρ  

Downwash angle: 

€ 

αd(y) =
1
4πU

dΓ(η) dη
y −η− s

s

∫ dη 

Induced drag: ∫
−

Γ=
s

s
di dyyyUD )()( αρ  

Fourier series for circulation: Γ(y) =Us Gn sinnθ,  with y = −scosθ
n odd
∑ ;  

  equivalently,  Gn =
2
π

Γ(y)
Us0

π

∫ sinnθ dθ  

Relation between lift and induced drag: 

  …+!!
"

#
$$
%

&
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"

#
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Elliptic lift distribution: Γ(y) = Γ0 1−
y2

s2
⎛

⎝
⎜

⎞

⎠
⎟

1 2

,  L = π
2
ρUΓ0s ,  αd =

Γ0
4Us

,  δ = 0  

d

P

βα

Γ

)(yΓ

-s s 
y 


