a) $\left.] \frac{V_{p}}{\rightarrow}\right\} \rightarrow V_{s} \quad$ Stationary fid

Shack fame:

Contiunuty: $\rho_{2}\left(V_{s}-V_{p}\right)=\rho_{1} V_{s} ; \quad \frac{\rho_{2}}{\rho_{1}}=\frac{V_{s}}{V_{s}-V_{p}}$
b) Assume $V_{s}=497 \mathrm{~m} / \mathrm{s}$, giving Mach no 1.461 LHS \& cuntinaith eq: $\frac{\rho_{2}}{\rho_{1}}=\frac{p_{2}}{p_{1}} \frac{T_{1}}{T_{2}}=2.3236 \times 1.2945=3.008$ While RHS $\frac{V_{s}}{V_{s}-V_{p}}=1.79 \quad \mathrm{Hmm}$.

Assuming $V_{s}=487 \mathrm{~m} / \mathrm{s}$ anyway, $p_{1}=2.32 \times 10^{5} \mathrm{~Pa}$

$$
T_{1}=373 / \mathrm{V}
$$

(1)
(2)
c)

$$
\begin{aligned}
& \left.\left.\underline{v}=v_{p}=220 \mathrm{~m} / \mathrm{s} \quad 3\right\}\right\} \quad p=10^{5} \mathrm{~Pa} \\
& a=387.04 \mathrm{~m} / \mathrm{s} \quad\{\{ \}\} \\
& \text { What else?? }
\end{aligned}
$$

Ans: isentropic amos expansion waves.

$$
a_{2}=a_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{2 r}}=343.12 \mathrm{~m} / \mathrm{s}
$$

4

$$
\begin{aligned}
V_{1}+\frac{2 a_{1}}{\gamma-1}=V_{2}+\frac{2 a_{2}}{\gamma-1} \Rightarrow V_{2} & =439.6 \mathrm{~m} / \mathrm{s} \\
T_{2} & =293.0 \mathrm{~K}
\end{aligned}
$$

d) At nine T, piston is e $x_{0}=x_{T}, x_{T}=V_{p} T$

Time for shock to reach end: $t_{s}=L / V_{s}$
Head of expansion tends \leftarrow at $a_{1}-V_{p}$
Tine to reach $x=x_{T}$ is $\quad \frac{L-x_{T}}{a_{1}-V_{p}}$
so

$$
\begin{aligned}
& \frac{L}{v_{s}}+\frac{L-x_{r}}{a_{1}-v_{p}}=T=\frac{x_{T}}{V_{p}} \\
& \begin{aligned}
\frac{L}{x_{r}}\left(\frac{x_{T}}{L}\right. & =\left(\frac{1}{v_{p}}+\frac{1}{a_{1}-v_{p}}\right) /\left(\frac{1}{v_{s}}+\frac{1}{a_{1}-v_{p}}\right) \\
& =1.32 \\
\frac{x_{r}}{L} & =0.76
\end{aligned}
\end{aligned}
$$

al

$$
\frac{p_{0 e}}{p_{0}}=1
$$

- when Hor subsmic theroughast
- when the supparmic and shode-hnce dounctieam of throat.

Otherwise, $p_{0 e} / p_{0}<1$ dur to presence of shock.
If $\frac{P_{0 e}}{p_{0}}=0.939$, then Mach un. upstream of
and $\frac{\dot{m} \sqrt{c_{5} T_{0}}}{A_{S} p_{0}}=$ nose 1.1077
Meanwhile

$$
\begin{aligned}
& \frac{\dot{m} \sqrt{c_{1} T_{0}}}{A_{E} P_{0}}=1.2810 \\
&
\end{aligned}
$$

b) Donisteream 4 shock $\frac{\dot{i} \sqrt{\rho_{p} \bar{T}_{0}}}{A_{s p \text { pos }}}=\frac{1.1077}{0.939}=1.180$

At exit, with $A_{e}=1.2 A_{t}=1.2 \frac{A_{s}}{1.15 .6}=1.038 A_{s}$

$$
\frac{\dot{m} \sqrt{c_{\text {pe }}}}{A_{\text {epos }}}=1.1364 \quad M_{e}=0.659
$$

$$
\begin{aligned}
\frac{p_{e}}{p_{0}} & \mu=0.659 \Rightarrow \frac{p_{e}}{p_{0 s}}
\end{aligned}=(1.3387)^{-1}=0.7470
$$

c) Let lougth of diveging section be L

Linear edatiarhip: $L=\operatorname{arch} 5 \frac{A_{e}-A_{t}}{A_{t}} \times L$ Mure genedyy $x=5 \frac{A-A_{t}}{A_{t}} \times L$
In (b) $x=0.78 \mathrm{~L} \Rightarrow$ now shode is $E 0.98 \mathrm{~L}$ and $A=\phi .196 A_{t}$

Upstream of shode: $\frac{n i \sqrt{s T_{0}}}{A p_{0}}=1.071 ; M=1.5286$
Downsteeam: $\frac{p_{05}}{P_{O}}=0.92046 \frac{\dot{i n} \sqrt{C_{D} T_{0}}}{A P_{O S}}=1.16355$
At axit $\frac{\text { in } \sqrt{4_{p} T_{0}}}{A_{0} p_{0 S}}=\frac{1.196}{1.2} \frac{i n \sqrt{9 T_{0}}}{A-p_{0 s}}=1.1597$

$$
\begin{array}{r}
M_{e}=0.6864, \frac{P_{e}}{P_{05}}=0.7296 \quad \frac{P_{e}}{P_{0}}=0.6716 \\
4.2 \% \text { dewease }
\end{array}
$$

3a)

cunnij raves
c) Pressure reconcy of intake (b) is $0.984 @ M=1.40$.

Nowal shoth con@M=1.40=0.958

Assume lower half of mitake (c)
is estuctially iountopic gives oneall prestre reconcy $=0.979$.

Requiver engrie to have sufficient fau/comprenar surge maugn to tolesate the astoriated dichonour.

pronage hetween frocelages mitalue \therefore intacee behaver as is llated pirot.

a) Inlet: $a=397.45 \mathrm{~m} / \mathrm{s} \quad \mu=0.377 \quad \frac{F}{i n \sqrt{91_{0}}}=1.4169$

Outset: $\Delta T_{0}=\frac{q}{c_{p}}=398.01 \mathrm{k}$ and $F=F_{\text {ink }}$

$$
\Rightarrow \frac{F}{i \sqrt{970}}=1.1169 \sqrt{\frac{404.34}{802.35}}=1.0058 ; \quad M=0.811
$$

b)

c) At some point, exit becomes cooled. Higher q than this wand imply $M=1$ behove exit, precluding functor heat additive and contradicting assumption of higher q.
Max rate when exit choked, with $\frac{F}{m_{\text {g }} \sqrt{g T_{0}}}=0.9897$

$$
\begin{aligned}
& \frac{\left(T_{0}\right)_{0 u t}}{\left(T_{0}\right)_{\text {in }}}=\left(\frac{1.4169}{0.9897}\right)^{2} \\
&=2.050 \quad\left(T_{0}\right)_{\text {out }}=828.74 \mathrm{~N} \\
& q=c_{p} \Delta T_{0}
\end{aligned}=426.5 \mathrm{~kJ} / \mathrm{kg}
$$

Sal

no syperstric featres a.
this regrai.
b) Consider the 3 weale oniques; from talles:

M_{1}	θ	M_{2}	$\beta_{02} / p_{0_{1}}$	p_{2} / p_{1}
2.40	10°	2.00	0.978	1.83
2.00	6°	1.79	0.996	1.39
1.79	16°	1.18	0.947	2.26

c) $\quad p_{2} / p_{1}=5.75$
d) $M_{2}=1.18 \Rightarrow \nu_{2}=3.07$ from talser

Imitiar fan tums fras thwoyn 16°, reffected fon anoriver 16°

$$
\Rightarrow v_{3}=35.07 \Rightarrow M_{3}=2.33
$$

e) From talses, $p_{1} / p_{0_{1}}=0.0684$ and $p_{3} / p_{0_{3}}=0.0763$

Fans are iteutropie $\therefore p_{03}=p_{02} \Rightarrow p_{03} / p_{01}=p_{02} / p_{01}$

$$
p_{3} /_{p_{1}}=p_{3} / p_{03} \times p_{03} / p_{01} \times p_{01} / p_{1}=\frac{0.0763}{0.922 \times 0.0684}=1.21
$$

Constriction has slowed fiow (M readuced) and raised statie pressre.

6 a)

$$
\begin{gathered}
\frac{\partial T}{\partial x}=\frac{\alpha}{u}\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right) \\
\frac{\partial T}{\partial x}=\frac{\left(T_{i}^{j+1}-T_{i}^{j}\right)}{\Delta x} \\
\frac{\partial^{2} T}{\partial x^{2}}=\frac{\left(T_{i}^{j+1}-2 T_{i}^{j}+2 T_{i}^{j-1}\right)}{\Delta x^{2}} \\
\frac{\partial^{2} T}{\partial y^{2}}=\frac{\left(T_{i+1}^{j}-2 T_{i}^{j}+2 T_{i-1}^{j}\right)}{\Delta y^{2}}
\end{gathered}
$$

Therefore the finite difference approximation is

$$
\begin{gathered}
\frac{\left(T_{i}^{j+1}-T_{i}^{j}\right)}{\Delta x}=\frac{\alpha}{u}\left(\frac{\left(T_{i+1}^{j}-2 T_{i}^{j}+2 T_{i-1}^{j}\right)}{\Delta y^{2}}+\frac{\left(T_{i}^{j+1}-2 T_{i}^{j}+T_{i}^{j-1}\right)}{\Delta x^{2}}\right) \\
\left(T_{i}^{j+1}-T_{i}^{j}\right)=\frac{\alpha \Delta x}{u}\left(\frac{\left(T_{i+1}^{j}-2 T_{i}^{j}+2 T_{i-1}^{j}\right)}{\Delta y^{2}}+\frac{\left(T_{i}^{j+1}-2 T_{i}^{j}+T_{i}^{j-1}\right)}{\Delta x^{2}}\right) \\
\left(T_{i}^{j+1}-T_{i}^{j}\right)=\sigma T_{i+1}^{j}-2 \sigma T_{i}^{j}+\sigma T_{i-1}^{j}+\gamma T_{i}^{j+1}-2 \gamma T_{i}^{j}+\gamma T_{i}^{j-1}
\end{gathered}
$$

With $\sigma=\frac{\alpha \Delta x}{u \Delta y^{2}}$ and $\sigma=\frac{\alpha}{u \Delta x}$
Collecting terms together

$$
T_{i}^{j+1}=\sigma T_{i+1}^{j}-(2 \sigma-2 \gamma+1) T_{i}^{j}+\sigma T_{i-1}^{j}+\gamma T_{i}^{j+1}+\gamma T_{i}^{j-1}
$$

b) When the conduction in the x -direction is neglected, the equation becomes

$$
\frac{\partial T}{\partial x}=\frac{\alpha}{u}\left(\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

Which is parabolic. This means it can be marched forward in x with time-marching being replaced by x-marching. The boundary conditions given are sufficient for this, i.e. an initial condition at $\mathrm{x}=0$, and values temperatures at the walls. If the conduction in the x direction is included, the equation now becomes elliptic. This means that the boundary conditions provided are not sufficient. This can also be seen from the update equation which can no longer be marched forward explicitly in the x direction. At the outlet, the update equation cannot work without some form of boundary condition, i.e. an outlet boundary condition, supplied. The problem is now a boundary value problem and it is only possible to get a solution by simultaneous computation across the entire domain.
ci)

$$
\begin{gathered}
T_{i}^{j+1}=\sigma T_{i+1}^{j}+(1-2 \sigma) T_{i}^{j}+\sigma T_{i-1}^{j} \\
T_{i}^{j+1}=T^{\prime}+\sigma(-1)^{i+1} \varepsilon+(1-2 \sigma)(-1)^{i} \varepsilon+\sigma(-1)^{i-1} \varepsilon \\
T_{i}^{j+1}=T^{\prime}+(-1)^{i}(-\sigma \varepsilon+(1-2 \sigma) \varepsilon-\sigma \varepsilon) \\
T_{i}^{j+1}-T^{\prime}=(-1)^{i} \varepsilon(1-4 \sigma) \\
T_{i}^{j+1}-T^{\prime}=\left(T_{i}^{j}-T^{\prime}\right)(1-4 \sigma)
\end{gathered}
$$

So disturbance decay shrink if $|(1-4 \sigma)|<1$

$$
\begin{gathered}
-1<(1-4 \sigma)<1 \\
-2<-4 \sigma<0 \\
0<\sigma<\frac{1}{2} \\
\frac{\alpha \Delta x}{u \Delta y^{2}}<\frac{1}{2}
\end{gathered}
$$

Note that "otherwise" can note that when $(1-2 \sigma)$ is negative, the new temperature is no longer a weighted average of the previous values at $i, i+1$ and $i-1$, so there is no smoothing filter.
cii)

$$
\begin{gathered}
T_{i}^{j+1}-T_{i}^{j}=\sigma T_{i+1}^{j+1}-(2 \sigma) T_{i}^{j+1}+\sigma T_{i-1}^{j+1} \\
-T_{i}^{j}=\sigma T_{i+1}^{j+1}-(2 \sigma+1) T_{i}^{j+1}+\sigma T_{i-1}^{j+1} \\
T_{i}^{j}=-\sigma T_{i+1}^{j+1}+(2 \sigma+1) T_{i}^{j+1}-\sigma T_{i-1}^{j+1}
\end{gathered}
$$

Now set the future j to have the disturbance and see how its magnitude has evolved.

$$
\begin{gathered}
T_{i}^{j+1}=T^{\prime}+(-1)^{i} \varepsilon \\
T_{i}^{j}=T^{\prime}+(-1)^{i} \varepsilon[4 \sigma+1] \\
T_{i}^{j}=T^{\prime}+\left(T_{i}^{j+1}-T^{\prime}\right)[4 \sigma+1] \\
\frac{T_{i}^{j}-T^{\prime}}{4 \sigma+1}=\left(T_{i}^{j+1}-T^{\prime}\right)
\end{gathered}
$$

This unstable if $|(1+4 \sigma)|<1$

$$
\begin{gathered}
-1<4 \sigma+1<1 \\
-2<4 \sigma<0 \\
-\frac{1}{2}<\sigma<0
\end{gathered}
$$

But since $\sigma>0$ then this implicit scheme is always stable. However, the implicit scheme cannot be marched explicitly, and instead a set of linear equations must be solved to move form j to
$\mathrm{j}+1$. So it's more work but more stable. However, if you make Δx too large, whilst it might be stable, the solution might be not very good. Though for large x it will converge correctly to the steady state.

7 (a) The central finite difference estimate for the first derivative is $\frac{\partial T}{\partial x}=\frac{T_{j+1}-T_{j-1}}{2 \Delta x}$. Show that the leading order error term is $O\left(\Delta x^{2}\right) ?[25 \%]$
$y(x+\Delta x)=y_{j+1}=y(x)+\left.\frac{d y}{d x}\right|_{x} \Delta x+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x} \Delta x^{2}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$
$y(x-\Delta x)=y_{j-1}=y(x)-\left.\frac{d y}{d x}\right|_{x} \Delta x+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x} \Delta x^{2}-\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$
Subtracting
$y(x+\Delta x)=y_{j+1}-y_{j-1}=\left.2 \frac{d y}{d x}\right|_{x} \Delta x+\left.\frac{2}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$
So

$$
\frac{y_{j+1}-y_{j-1}}{2 \Delta x}=\left.\frac{d y}{d x}\right|_{x}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{2}+O\left(\Delta x^{4}\right)
$$

Therefore, the leading error term is $\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{2}$, which is $O\left(\Delta x^{2}\right)$ as required.
(b) Using three equally spaced grid points, find an expression for the highest order forward difference estimate of $\frac{\partial T}{\partial x}$.
$y_{j+1}=y_{i}+\left.\frac{d y}{d x}\right|_{x} \Delta x+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x} \Delta x^{2}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$
$y_{j+2}=y_{i}+\left.\frac{d y}{d x}\right|_{x} 2 \Delta x+\left.\frac{4}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x} \Delta x^{2}+\left.\frac{8}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$

Eliminate the $\mathrm{O}\left(\Delta x^{2}\right)$
$y_{j+2}-4 y_{j+1}=-3 y_{i}-\left.2 \frac{d y}{d x}\right|_{x} \Delta x+\left.\frac{4}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{3}+O\left(\Delta x^{4}\right)$
$\frac{-y_{j+2}+4 y_{j+1}-3 y_{i}}{2 \Delta x}=\left.\frac{d y}{d x}\right|_{x}+\left.\frac{2}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x} \Delta x^{2}+O\left(\Delta x^{4}\right)$
Therefore

$$
\left.\frac{d y}{d x}\right|_{x}=\frac{-y_{j+2}+4 y_{j+1}-3 y_{i}}{2 \Delta x}
$$

And the error is $\mathrm{O}\left(\Delta x^{2}\right)$
a)

$$
\begin{aligned}
\alpha_{1, a b s} & =\alpha_{3, a b s}=-30^{\circ} \\
V_{x} & =200 \mathrm{~m} / \mathrm{s} \\
\varnothing & =\frac{V_{x}}{U}=0.5
\end{aligned}
$$

$$
C_{p}=1150 \mathrm{~J} / \mathrm{kg}
$$

$$
\alpha_{2, r e l}-\alpha_{3, r e l}=110^{\circ}
$$

$$
V_{1, a b s}=\frac{V_{x}}{\cos 9_{1, a b s}}=\frac{200}{\cos (-30)}=231 \mathrm{~ms}^{-1}
$$

$$
\begin{align*}
& U=\frac{V_{x}}{\varnothing}=400 \mathrm{~ms}^{-1} \\
& V_{x}=V_{3, \text { rel }} \cos \theta_{3, r e l}=V_{2, r e l} \cos \theta_{2, r l}=200 \tag{2}\\
& V_{3, \text { el }} \sin \theta_{3, c l} 1+U=V_{1, a b s} \sin 4_{1, a b s} \\
& \quad V_{3, \text { rel } \sin q_{3, r d l}}=-515.5 \mathrm{~ms}^{-1} \tag{1}
\end{align*}
$$

For machine $4 \times 276 \times 10^{3}=1.10 \mathrm{MJ} \mathrm{kg}^{-1}$
b)

$$
\begin{aligned}
& V_{2, a b s}=\frac{575}{\sin 20.8}=610 \mathrm{~ms}^{-1} \\
& T_{01}=T_{02}=2000 \mathrm{k} \quad \frac{V_{2}}{\sqrt{C_{p} T_{02}}}=0.402 \\
& M_{2}=0.73 \text { From tables }
\end{aligned}
$$

$$
-A N A N(H) N D
$$

Span must increase as p falls to keep V_{x}. Minereases as To Falls

$$
\begin{aligned}
& \frac{(1)}{(2)}=\tan q_{3, r e}=\frac{-515.5}{200} \quad q_{3 \text { rel }}=-68.8^{\circ} \\
& \alpha_{2, \text { rel }}=41.2^{\circ} \\
& V_{2, a b s} \sin \alpha_{2, a b s}=V_{2, r e \mid} \sin \alpha_{2, r e l}+U=575 \mathrm{~ms}^{-1} \\
& V_{\text {five }}=\frac{V_{x}}{\cos Q_{2, N e}}=266 \mathrm{~ms}^{-1} \quad \uparrow \\
& \tan \left(\alpha_{2, a b s}\right)=\frac{575}{200} \text { ancolso } \\
& \alpha_{\text {1,abs }}=70.8^{\circ} \\
& \Delta h_{0}=U\left(V_{\theta 3}-V_{\theta 2}\right) \\
& =400(231 \sin (-30)-575) \\
& =-276 \times 10^{3} \mathrm{k} \mathrm{~kg}^{-1}
\end{aligned}
$$

a) i)

$$
\begin{aligned}
& \Delta T_{0}=\frac{\dot{W}_{x}}{\dot{m} c_{p}}=\frac{2000}{0.03 \times 1005}=66.3 \mathrm{~K} \\
& T_{03}=T_{01}+\Delta T_{0}=354 \mathrm{~K} \\
& T_{035}=T_{0} \times P R^{\frac{\gamma-1}{\gamma}}=335 \mathrm{~K} \\
& n_{T T}=\frac{T_{035}-T_{01}}{T_{03}-T_{01}}=71.1 \%
\end{aligned}
$$

ii) $V_{r, 3}=\frac{\dot{m}}{\rho_{3}=1 \mathrm{kgm}^{-3}}=\frac{0.03}{2 \pi \times 34 \times 10^{-3} \times 3 \times 10^{-3}}=46.8 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
& \Omega=\frac{2 \times \pi \times r p m}{60}=9425 \mathrm{rads}^{-1} \\
& V_{t, 2}=\frac{\Delta T_{0} \times c_{p}}{r_{2} \Omega}=29 \mathrm{~m}^{-1} \\
& r_{3} V_{t, 3}=r_{2} V_{t, 2} \quad N_{0} \\
& V_{t, 3}=208 \mathrm{~ms}^{-1}
\end{aligned}
$$

$$
V_{t_{1}, 2}=\frac{\Delta T_{0} \times C_{p}}{r_{2} \Omega}=295_{m s-1} \quad N_{0} \text { inlet swirl }
$$

No torque in differ
(ii)

$$
\begin{aligned}
& V_{3}=\sqrt{V_{t, 3}^{2}+V_{r, 3^{2}}}=213 \mathrm{~ms}^{-1} \\
& \frac{V_{3}}{\sqrt{C_{p} T_{03}}}=0.357 \quad M_{3}=0.58 \quad \text { tables }
\end{aligned}
$$

iv) $\frac{P_{3}}{P_{01}}=\frac{P_{3}}{P_{03}}+\frac{P_{03}}{P_{01}}=1.35 \quad T_{35}=T_{01}\left(\frac{P_{3}}{P_{01}}\right)^{\frac{\gamma-1}{\gamma}}=314 \mathrm{~K}$

$$
n_{T S}=\frac{T_{3 S}-T_{01}}{T_{03}-T_{01}}=38.8 \%
$$

0) $n_{T S}$ is correct metric. The compressor is diving flow through the machine. The velocity at the exit, V_{3}, is wasted and $K E$ is lost.
\Rightarrow Speed increase:

$$
\begin{aligned}
\Omega_{\text {new }}=12,566 \mathrm{rads}^{-1} \quad V_{t, 2,} & =\frac{\Delta T_{0} \times c_{p}}{r_{2} \Omega_{\text {new }}} \\
& =221 \mathrm{~ms}^{-1} \\
V_{t, 3, \text { now }} & =\frac{r_{2} V_{t, \text {, new }}}{r_{3}}=156 \mathrm{~ms}^{-1} \\
V_{\text {3, new }} & =\sqrt{V_{r, 3}{ }^{2}+V_{t, 3, \text { new }}{ }^{2}}=163 \mathrm{~ms}^{-1}
\end{aligned}
$$

76% of old value
Diffuser vanes:

$$
\begin{array}{r}
V_{3, e w}=\frac{V_{r, 3}}{\cos 60}=93.6 \mathrm{~ms}^{-1} \\
44 \% \text { of old valve }
\end{array}
$$

Vanes are superior.
Could cause extra cost thargh complexity. or create noise with extras interactions or carse problems for design with separation ${ }^{\circ}$ cause iscires in: th ala... tile.... IL P...

