EGT2
ENGINEERING TRIPOS PART IIA

Wednesday 3 May $2023 \quad 9.30$ to 12.40

Module 3A3

FLUID MECHANICS II

Answer not more than five questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS

Write on single-sided paper.
Use the graph paper for Q3.

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM

CUED approved calculator allowed.
Attachments:
Compressible Flow Data Book (38 pages);
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of the exam.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.

Version AA/9

1 Figure 1 shows the position-time diagram for a piston impulsively started in an open-ended tube. The air in the tube is initially at rest at an ambient temperature and pressure of 288 K and $10^{5} \mathrm{~Pa}$ respectively. Initially the piston is at rest. At time $t=0$ the piston velocity rises instantaneously to $220 \mathrm{~ms}^{-1}$. The piston velocity then remains constant.
(a) By using a frame of reference moving with the shock wave, express the ratio of densities on either side of the shock as a function of the piston and shock velocities.
(b) Using the result of part (a) and the normal shock tables, show that the velocity of the shock is approximately $497 \mathrm{~ms}^{-1}$. Calculate the static temperature and pressure of the air in region 1 (see Fig. 1).
(c) When the shock wave reaches the open end of the tube a left running expansion wave is formed. Calculate the velocity and static temperature of the gas in region 2. You may make use of the Riemann invariant for a left running wave:

$$
V+\frac{2 a}{\gamma-1}
$$

where V and a represent the local flow and sound speed, respectively, and γ is the ratio of specific heat capacities.
(d) At time T the front of the expansion wave contacts the piston face. Calculate the location of the piston in the tube, as a percentage of the tube length L, at time T.

Fig. 1

Version AA/9

2 The inlet of a convergent-divergent nozzle is connected to a large plenum of air at a stagnation pressure p_{0}. The nozzle exhausts to a second large plenum of pressure p_{e}. The stagnation pressure at the exit plane of the nozzle is $p_{0 e}$. The flow through the nozzle is adiabatic and frictionless.
(a) Sketch the pressure distributions along the nozzle as p_{e} / p_{0} is gradually reduced. Explain how $p_{0 e} / p_{0}$ varies. If there is a 6.1% drop in stagnation pressure from nozzle inlet to exit, find the area of the nozzle relative to the area of the throat at which the shock is located.
(b) The ratio of the exit area to throat area of the nozzle is 1.2 . The duct has the same drop in stagnation pressure as specified in part (a). Calculate the Mach number at the exit of the nozzle M_{e} and the pressure ratio p_{e} / p_{0}.
(c) The cross-sectional area of the divergent section of the nozzle varies linearly with distance downstream of the throat. The pressure ratio p_{e} / p_{0} calculated in part (b) is altered so that the shock moves downstream by 20% of the length of the divergent section of the duct. Calculate the percentage change in p_{e} / p_{0} from that calculated in part (b).

Version AA/9

3 A lightweight supersonic jet aircraft is being developed to operate over a range of Mach numbers, $1.40<M<1.80$. Different designs of engine intake are under consideration. The first, sketched in Fig. 2a, is a conventional external compression design using a 9° wedge, designed such that the shock system is focused on the cowl lip at $M=1.80$. As the development progresses, performance at $M=1.40$ becomes more significant and it is proposed to replace the intake with a pitot type, sketched in Fig. 2b, incorporating a splitter plate to isolate the intake from the fuselage boundary layer. By removing the splitter plate, as sketched in Fig. 2c, it is found that the fuselage boundary layer forms a smooth curved ramp ahead of the intake and the pressure recovery in the lower half of the intake is improved compared with that of the design sketched in Fig. 2b.
(a) Draw carefully labelled sketches of the shock systems for all three intakes at $M=1.40$.
(b) Using increments of $M=0.1$, plot the pressure recovery of the intake, sketched in Fig. 2a, in terms of the ratio of stagnation pressure, over the range $1.40<M<1.80$. Use the graph paper provided
(c) Calculate the reduction in pressure recovery at $M=1.40$ by changing from the intake sketched in Fig. 2a to that in Fig. 2b.
(d) Calculate the percentage of the reduction in pressure recovery calculated in part (c) regained by removing the splitter plate in the design sketched in Fig. 2c. Other than differences in stagnation pressure, you may assume the flow into the intake is uniform.

Fig. 2: (Not to scale)

Version AA/9

4 An industrial air heater consists of a tube of constant cross-sectional area surrounded by an electrical heating element. Air enters the tube at a temperature of $120^{\circ} \mathrm{C}$ with a velocity of $150 \mathrm{~ms}^{-1}$. Heat is supplied at a rate of 400 kJ per kg of air flowing. The effects of friction are negligible.
(a) Calculate the Mach number of the air at each end of the tube.
(b) Draw and label a $T-s$ (temperature-entropy) diagram to illustrate the process. Include the Rayleigh line on your diagram.
(c) The rate of heat addition is increased. Why is there a maximum rate of heat addition that can be accepted before the inlet conditions to the tube are found to change? Determine this maximum rate of heat addition.

Version AA/9

5 Dry air enters a solid-walled channel at a supersonic Mach number, $M=2.40$. The channel contains a constriction, sketched in Fig. 3. The floor of the channel turns through 10° at point A and then by a further 6° at point B , as shown in the figure. At point C the flow turns back to its original direction. There is a sharp corner of 16° at point D followed by a smooth curve in the floor between points D and E that returns the channel to its original direction. The flow in region 1 (upstream of A), region 2 (between points C and D) and in region three (downstream of E) is parallel to the flat roof of the channel and is uniform.
(a) Draw a carefully labelled sketch of the supersonic flow features in the channel.
(b) Calculate the Mach number in region 2.
(c) Calculate the static pressure in region 2 in terms of the incoming static pressure, $p_{1} \cdot[10 \%]$
(d) Estimate the Mach number in region 3, stating your assumptions.
(e) Estimate the static pressure in region 3 in terms of the incoming static pressure, p_{1}, and briefly comment on your answer.

Fig. 3

Version AA/9

6 Water, with thermal diffusivity α, flows between two parallel flat plates of length L and separated by a distance h. At steady state, the temperature is governed by

$$
u \frac{\partial T}{\partial x}=\alpha\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)
$$

The velocity in the x-direction, u, is uniform. The temperature distribution at the walls, $T(y=0)$ and $T(y=h)$, and the inlet temperature $T(x=0)$ are specified.
(a) The temperature profile is to be determined numerically using a uniform grid with spacing Δx and Δy. Show that using finite differences with second-order central difference estimates for second derivatives and a first-order forward estimate for the first derivative results in an update equation of the form,

$$
\begin{equation*}
T_{i}^{j+1}=\sigma T_{i+1}^{j}+(1-2 \sigma-2 \gamma) T_{i}^{j}+\sigma T_{i-1}^{j}+\gamma T_{i}^{j+1}+\gamma T_{i}^{j-1} \tag{1}
\end{equation*}
$$

where σ and γ are to be determined and (i, j) are integers that locate the grid point in the y and x direction, respectively.
(b) With reference to the nature/classification of the governing PDE, and the required boundary conditions, suggest why the problem is easier to solve numerically if thermal conduction in the x-direction can be neglected.
(c) Neglecting conduction of heat in the x-direction:
(i) By considering a sawtooth perturbation of small amplitude ϵ (the perturbation varies grid-point to grid-point from $+\epsilon$ to $-\epsilon$) determine the maximum step size for Δx for a stable, non-oscillatory, solution using Eq. 1.
(ii) The finite difference method is changed so that the approximation for the second derivative at grid point (i, j) is evaluated at grid point $(i, j+1)$. Show that the resulting update equation is stable for all possible values of Δx and comment on the merits of using this rather unusual future estimate of the second derivative.

Version AA/9

7 (a) The spatial derivative of temperature, $\partial T / \partial x$, is to be estimated with a finite difference scheme.
(i) For the central difference scheme

$$
\frac{\partial T}{\partial x}=\frac{T_{j+1}-T_{j-1}}{2 \Delta x}
$$

show that the leading order error term is $O\left(\Delta x^{2}\right)$.
(ii) Using three equally-spaced grid points, find an expression for the highest order forward difference estimate of $\partial T / \partial x$.
(b) An axial turbine has four stages with repeating mean-line velocity triangles. The incoming swirl angle to the first stage is -30° in the absolute frame. The axial velocity is constant at $200 \mathrm{~ms}^{-1}$, the flow coefficient is 0.5 and the turning of the rotor row in the relative frame is 110°. The combustion products have an isobaric specific heat capacity $c_{p}=1.15 \mathrm{~kJ} \mathrm{~kg}^{-1}$ and a ratio of specific heat capacities $\gamma=1.333$.
(i) Draw the velocity triangles and calculate the swirl angles in both absolute and relative frames. Calculate the work output of the entire machine per kg of air flowing through it.
(ii) If the stagnation temperature at inlet to the first row is 2000 K determine the exit Mach number of the first stator row. Explain how the span of the turbine blades must be varied through the machine to maintain the repeating stage condition. What will be the effect of this span variation on the Mach number at the exit of the last stator row?

Version AA/9

8 A single stage centrifugal compressor is used to draw air through a vacuum cleaner. The meridional drawing is shown in Fig. 4 , indicating station numbers and dimensions. Stations 1 and 2 are at inlet and exit of the rotor, stations 2 and 3 are at inlet and exit of a vaneless diffuser through which moment of momentum is conserved.
(a) The power consumed by the compressor is 2 kW , the mass flow rate is $0.03 \mathrm{kgs}^{-1}$, the rotational speed is $90,000 \mathrm{RPM}$ and the total-total pressure ratio is 1.7 . The stagnation temperature at the inlet is 288 K , the density at the outlet is $1 \mathrm{~kg} \mathrm{~m}^{-3}$ and there is zero inlet swirl. Calculate the:
(i) total-total isentropic efficiency
(ii) radial and tangential velocity components at machine exit
(iii) exit Mach number
(iv) total-static isentropic efficiency
(b) Which type of efficiency is the most appropriate metric of performance in this application and why?
(c) The turbomachinery design team propose two possible improvements to the design to increase performance. Either the speed of the rotor can be increased to 120,000 RPM, or vanes could be used in the diffuser to achieve an absolute exit yaw angle of 60°. By assuming that the compressor operates at the same power and mass flow rate, determine which of these two solutions is superior by comparing the exit velocities. Describe a drawback to its implementation in this application. Assume that the density at the outlet remains unchanged.

Fig. 4

END OF PAPER

Compressible Flow Data Book for Part II of the Engineering Tripos

2009 Edition

Cambridge University Engineering Department

PERFECT GAS RELATIONS FOR COMPRESSIBLE FLOW

Ratios of stagnation to static quantities

$$
\begin{aligned}
& \frac{T}{T_{0}}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-1} \\
& \frac{p}{p_{0}}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{\gamma}{\gamma-1}} \\
& \frac{\rho}{\rho_{0}}=\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{1}{\gamma-1}}
\end{aligned}
$$

Notes.
(1) $T_{0}=$ const. in adiabatic flow with no shaft work
(2) If flow is isentropic, $p_{0}=$ const. and $\rho_{0}=$ const. when $T_{0}=$ const .

Mach number relations (see tables)

$$
\begin{gathered}
\frac{V}{\sqrt{c_{p} T_{0}}}=\sqrt{\gamma-1} M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{1}{2}} \\
\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}=\frac{\gamma}{\sqrt{\gamma-1}} M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{1}{2}\left(\frac{\gamma+1}{\gamma-1}\right)} \\
\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}=\frac{\gamma}{\sqrt{\gamma-1}} M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{\frac{1}{2}} \\
\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}=\frac{\sqrt{\gamma-1}}{\gamma} \frac{1+\gamma M^{2}}{M}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{1}{2}} \text { where } \quad F=\left(p+\rho V^{2}\right) A \\
\frac{1}{2} \rho V^{2} \\
p_{0}
\end{gathered}=\frac{1}{2} \gamma M^{2}\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\frac{\gamma}{\gamma-1}} .
$$

ONE-DIMENSIONAL FLOW OF A PERFECT GAS

Isentropic flow

$$
\frac{A}{A^{*}}=\frac{1}{M}\left\{\frac{2}{\gamma+1}\left(1+\frac{\gamma-1}{2} M^{2}\right)\right\}^{\frac{1}{2}\left(\frac{\gamma+1}{\gamma-1}\right)}
$$

Adiabatic constant area flow

$$
\frac{4 c_{f} L_{\max }}{D}=\frac{1-M^{2}}{\gamma M^{2}}+\frac{\gamma+1}{2 \gamma} \ln \left(\frac{(\gamma+1) M^{2}}{2\left(1+\frac{\gamma-1}{2} M^{2}\right)}\right)
$$

Normal shock waves in perfect gases

$$
\begin{gathered}
V V_{s}=a^{*} \\
M_{s}=\left(\frac{1+\frac{\gamma-1}{2} M^{2}}{\gamma M^{2}-\frac{\gamma-1}{2}}\right)^{\frac{1}{2}} \\
\frac{p_{0 s}}{p_{0}}=\left(\frac{\frac{\gamma+1}{2} M^{2}}{1+\frac{\gamma-1}{2} M^{2}}\right)^{\frac{\gamma}{\gamma-1}}\left(\frac{2 \gamma}{\gamma+1} M^{2}-\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{1-\gamma}} \\
\frac{p_{s}}{p}=1+\frac{2 \gamma}{\gamma+1}\left(M^{2}-1\right) \\
\frac{p_{0 s}}{p}=\left(\frac{\gamma+1}{2} M^{2}\right)^{\frac{\gamma}{\gamma-1}}\left(\frac{2 \gamma}{\gamma+1} M^{2}-\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{1-\gamma}} \\
\frac{T_{s}}{T}=\frac{\gamma-1}{(\gamma+1)^{2}} \frac{2}{M^{2}}\left(1+\frac{\gamma-1}{2} M^{2}\right)\left(\frac{2 \gamma}{\gamma-1} M^{2}-1\right) \\
\frac{\rho_{s}}{\rho}=\frac{(\gamma+1) M^{2}}{2\left(1+\frac{\gamma-1}{2} M^{2}\right)}
\end{gathered}
$$

TWO DIMENSIONAL SUPERSONIC FLOW

Method of Characteristics for 2-D supersonic flow

Applicable to adiabatic ($\mathbf{h}_{\mathbf{0}}=$ constant), isentropic flow

Mach Number

$$
M=u / c
$$

Mach angle

$$
\mu=\sin ^{-1}\left(\frac{1}{M}\right)
$$

Prandtl-Meyer function $\quad v=\int_{1}^{M} \sqrt{M^{2}-1} \frac{d u}{u}$

$$
v=\sqrt{\frac{\gamma+1}{\gamma-1}} \tan ^{-1} \sqrt{\frac{\gamma-1}{\gamma+1}\left(M^{2}-1\right)}-\tan ^{-1} \sqrt{M^{2}-1} \quad \text { for a perfect gas }
$$

Calculations

Lattice Method

Field (or wave) method

$$
\begin{array}{ll}
v_{3}-\theta_{3}=v_{2}-\theta_{2} & \text { along }+\mu \\
v_{3}+\theta_{3}=v_{1}+\theta_{1} & \text { along }-\mu
\end{array}
$$

$$
\begin{array}{ll}
v_{3}+\theta_{3}=v_{1}+\theta_{1} & \text { across }+\mu \\
v_{3}-\theta_{3}=v 2-\theta_{2} & \text { across }-\mu
\end{array}
$$

Linearised Method of Characteristics (thin film theory)

$$
\begin{aligned}
& \mu \approx \sin ^{-1}\left(1 / M_{\infty}\right) \\
& \Delta p \approx \pm \frac{\rho_{\infty} u_{\infty}^{2} \Delta \theta}{\sqrt{M_{\infty}^{2}-1}} \quad \text { across } \pm \mu \text { waves }
\end{aligned}
$$

Pressure coefficient $c_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} u_{\infty}^{2}}= \pm \frac{2 \theta}{\sqrt{M_{\infty}^{2}-1}} \quad$ on upper/lower surface

Prandtl-Glauert rule for linearised potential flow past geometrically similar bodies

Pressure coefficient $\quad c_{p}=\frac{p-p_{\infty}}{\frac{1}{2} \rho_{\infty} u_{\infty}^{2}}$
For geometrically similar bodies with $\frac{\eta}{L}=f\left(\frac{x}{L}\right)$ and $c_{p}\left(M_{\infty}=0\right)=c_{p 0}$,

$$
\begin{array}{ll}
c_{p}=\frac{c_{p 0}}{\sqrt{1-M_{\infty}^{2}}} & \text { in subsonic flow } \\
c_{p} \propto \frac{1}{\sqrt{M_{\infty}^{2}-1}} & \text { in supersonic flow }
\end{array}
$$

Oblique Shock Relations (see tables)

$$
\begin{gathered}
\frac{p_{2}}{p_{1}}=1+\frac{2 \gamma}{\gamma+1}\left(M_{1}^{2} \sin ^{2} \beta-1\right) \\
\frac{T_{2}}{T_{1}}=\frac{\gamma-1}{(\gamma+1)^{2}} \frac{2}{M_{1}^{2} \sin ^{2} \beta}\left(1+\frac{\gamma-1}{2} M_{1}^{2} \sin ^{2} \beta\right)\left(\frac{2 \gamma}{\gamma-1} M_{1}^{2} \sin ^{2} \beta-1\right) \\
\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M_{1}^{2} \sin ^{2} \beta}{2\left[1+\frac{\gamma-1}{2} M_{1}^{2} \sin ^{2} \beta\right]} \\
\frac{p_{02}}{p_{01}}=\left(\frac{\frac{\gamma+1}{2} M_{1}^{2} \sin ^{2} \beta}{1+\frac{\gamma-1}{2} M_{1}^{2} \sin ^{2} \beta}\right)^{\frac{\gamma}{\gamma-1}}\left(\frac{1+\frac{\gamma-1}{2} M_{1}^{2} \sin ^{2} \beta}{\gamma+1} M_{1}^{2} \sin ^{2} \beta-\frac{\gamma-1}{\gamma+1}\right)^{\frac{1}{2}} \\
\operatorname{m}_{1}^{2} \sin ^{2} \beta-\frac{\gamma-1}{2} \\
\tan ^{\frac{1}{2}} \theta=\frac{2 \cot \beta\left(M_{1}^{2} \sin ^{2} \beta-1\right)}{(\gamma+1) M_{1}^{2}-2\left(M_{1}^{2} \sin ^{2} \beta-1\right)}
\end{gathered}
$$

Shock angle β
Page 6 of 38

GAS FLOW TABLES ($\gamma=1.400$): SUBSONIC FLOW

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
0.010	1.0000	0.9999	1.0000	0.0063	0.0221	0.0221	45.1813	7134.405	0.0001
0.020	0.9999	0.9997	0.9998	0.0126	0.0443	0.0443	22.5994	1778.450	0.0003
0.030	0.9998	0.9994	0.9996	0.0190	0.0664	0.0664	15.0761	787.0814	0.0006
0.040	0.9997	0.9989	0.9992	0.0253	0.0885	0.0886	11.3173	440.3522	0.0011
0.050	0.9995	0.9983	0.9988	0.0316	0.1105	0.1107	9.0644	280.0203	0.0017
0.060	0.9993	0.9975	0.9982	0.0379	0.1325	0.1329	7.5645	193.0311	0.0025
0.070	0.9990	0.9966	0.9976	0.0443	0.1545	0.1550	6.4947	140.6550	0.0034
0.080	0.9987	0.9955	0.9968	0.0506	0.1764	0.1772	5.6939	106.7182	0.0045
0.090	0.9984	0.9944	0.9960	0.0569	0.1983	0.1994	5.0723	83.4961	0.0056
0.100	0.9980	0.9930	0.9950	0.0632	0.2200	0.2216	4.5762	66.9216	0.0070
0.110	0.9976	0.9916	0.9940	0.0695	0.2417	0.2438	4.1714	54.6879	0.0084
0.120	0.9971	0.9900	0.9928	0.0758	0.2633	0.2660	3.8350	45.4080	0.0100
0.130	0.9966	0.9883	0.9916	0.0821	0.2849	0.2883	3.5513	38.2070	0.0117
0.140	0.9961	0.9864	0.9903	0.0884	0.3063	0.3105	3.3089	32.5113	0.0135
0.150	0.9955	0.9844	0.9888	0.0947	0.3276	0.3328	3.0996	27.9320	0.0155
0.160	0.9949	0.9823	0.9873	0.1009	0.3488	0.3551	2.9172	24.1978	0.0176
0.170	0.9943	0.9800	0.9857	0.1072	0.3699	0.3774	2.7569	21.1152	0.0198
0.180	0.9936	0.9776	0.9840	0.1135	0.3908	0.3997	2.6151	18.5427	0.0222
0.190	0.9928	0.9751	0.9822	0.1197	0.4116	0.4221	2.4889	16.3752	0.0246
0.200	0.9921	0.9725	0.9803	0.1260	0.4323	0.4445	2.3758	14.5333	0.0272
0.210	0.9913	0.9697	0.9783	0.1322	0.4528	0.4669	2.2740	12.9560	0.0299
0.220	0.9904	0.9668	0.9762	0.1385	0.4731	0.4893	2.1820	11.5961	0.0328
0.230	0.9895	0.9638	0.9740	0.1447	0.4933	0.5118	2.0985	10.4161	0.0357
0.240	0.9886	0.9607	0.9718	0.1509	0.5133	0.5343	2.0225	9.3865	0.0387
0.250	0.9877	0.9575	0.9694	0.1571	0.5332	0.5568	1.9530	8.4834	0.0419
0.260	0.9867	0.9541	0.9670	0.1633	0.5528	0.5794	1.8892	7.6876	0.0451
0.270	0.9856	0.9506	0.9645	0.1695	0.5723	0.6020	1.8306	6.9832	0.0485
0.280	0.9846	0.9470	0.9619	0.1757	0.5915	0.6246	1.7766	6.3572	0.0520
0.290	0.9835	0.9433	0.9592	0.1819	0.6106	0.6473	1.7267	5.7989	0.0555
0.300	0.9823	0.9395	0.9564	0.1881	0.6295	0.6700	1.6805	5.2993	0.0592
0.310	0.9811	0.9355	0.9535	0.1942	0.6481	0.6928	1.6377	4.8507	0.0629
0.320	0.9799	0.9315	0.9506	0.2003	0.6666	0.7156	1.5978	4.4467	0.0668
0.330	0.9787	0.9274	0.9476	0.2065	0.6848	0.7384	1.5608	4.0821	0.0707
0.340	0.9774	0.9231	0.9445	0.2126	0.7027	0.7613	1.5262	3.7520	0.0747
0.350	0.9761	0.9188	0.9413	0.2187	0.7205	0.7842	1.4939	3.4525	0.0788
0.360	0.9747	0.9143	0.9380	0.2248	0.7380	0.8072	1.4637	3.1801	0.0829
0.370	0.9733	0.9098	0.9347	0.2309	0.7553	0.8302	1.4354	2.9320	0.0872
0.380	0.9719	0.9052	0.9313	0.2369	0.7723	0.8532	1.4090	2.7054	0.0915
0.390	0.9705	0.9004	0.9278	0.2430	0.7891	0.8763	1.3841	2.4983	0.0959
0.400	0.9690	0.8956	0.9243	0.2490	0.8056	0.8995	1.3608	2.3085	0.1003
0.410	0.9675	0.8907	0.9207	0.2551	0.8219	0.9227	1.3388	2.1344	0.1048
0.420	0.9659	0.8857	0.9170	0.2611	0.8379	0.9460	1.3182	1.9744	0.1094
0.430	0.9643	0.8807	0.9132	0.2671	0.8536	0.9693	1.2988	1.8272	0.1140
0.440	0.9627	0.8755	0.9094	0.2730	0.8691	0.9927	1.2804	1.6915	0.1186
0.450	0.9611	0.8703	0.9055	0.2790	0.8843	1.0161	1.2632	1.5664	0.1234
0.460	0.9594	0.8650	0.9016	0.2850	0.8992	1.0396	1.2469	1.4509	0.1281
0.470	0.9577	0.8596	0.8976	0.2909	0.9138	1.0631	1.2315	1.3441	0.1329
0.480	0.9559	0.8541	0.8935	0.2968	0.9282	1.0867	1.2170	1.2453	0.1378
0.490	0.9542	0.8486	0.8894	0.3027	0.9423	1.1104	1.2033	1.1539	0.1426
0.500	0.9524	0.8430	0.8852	0.3086	0.9561	1.1341	1.1903	1.0691	0.1475

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
0.510	0.9506	0.8374	0.8809	0.3145	0.9696	1.1579	1.1781	0.9904	0.1525
0.520	0.9487	0.8317	0.8766	0.3203	0.9828	1.1818	1.1665	0.9174	0.1574
0.530	0.9468	0.8259	0.8723	0.3262	0.9958	1.2057	1.1556	0.8496	0.1624
0.540	0.9449	0.8201	0.8679	0.3320	1.0084	1.2297	1.1452	0.7866	0.1674
0.550	0.9430	0.8142	0.8634	0.3378	1.0208	1.2538	1.1354	0.7281	0.1724
0.560	0.9410	0.8082	0.8589	0.3436	1.0328	1.2779	1.1261	0.6736	0.1774
0.570	0.9390	0.8022	0.8544	0.3493	1.0446	1.3021	1.1173	0.6229	0.1825
0.580	0.9370	0.7962	0.8498	0.3551	1.0561	1.3264	1.1090	0.5757	0.1875
0.590	0.9349	0.7901	0.8451	0.3608	1.0672	1.3507	1.1011	0.5317	0.1925
0.600	0.9328	0.7840	0.8405	0.3665	1.0781	1.3751	1.0937	0.4908	0.1976
0.610	0.9307	0.7778	0.8357	0.3722	1.0887	1.3996	1.0867	0.4527	0.2026
0.620	0.9286	0.7716	0.8310	0.3779	1.0990	1.4242	1.0800	0.4172	0.2076
0.630	0.9265	0.7654	0.8262	0.3835	1.1090	1.4489	1.0737	0.3841	0.2127
0.640	0.9243	0.7591	0.8213	0.3891	1.1186	1.4736	1.0678	0.3533	0.2177
0.650	0.9221	0.7528	0.8164	0.3948	1.1280	1.4984	1.0621	0.3246	0.2226
0.660	0.9199	0.7465	0.8115	0.4003	1.1371	1.5233	1.0568	0.2979	0.2276
0.670	0.9176	0.7401	0.8066	0.4059	1.1459	1.5483	1.0518	0.2730	0.2326
0.680	0.9153	0.7338	0.8016	0.4115	1.1544	1.5733	1.0471	0.2498	0.2375
0.690	0.9131	0.7274	0.7966	0.4170	1.1626	1.5984	1.0426	0.2282	0.2424
0.700	0.9107	0.7209	0.7916	0.4225	1.1705	1.6237	1.0384	0.2081	0.2473
0.710	0.9084	0.7145	0.7865	0.4280	1.1782	1.6490	1.0344	0.1895	0.2521
0.720	0.9061	0.7080	0.7814	0.4335	1.1855	1.6744	1.0307	0.1721	0.2569
0.730	0.9037	0.7016	0.7763	0.4389	1.1925	1.6999	1.0272	0.1561	0.2617
0.740	0.9013	0.6951	0.7712	0.4443	1.1993	1.7254	1.0239	0.1411	0.2664
0.750	0.8989	0.6886	0.7660	0.4497	1.2058	1.7511	1.0208	0.1273	0.2711
0.760	0.8964	0.6821	0.7609	0.4551	1.2119	1.7768	1.0179	0.1145	0.2758
0.770	0.8940	0.6756	0.7557	0.4605	1.2178	1.8027	1.0152	0.1026	0.2804
0.780	0.8915	0.6691	0.7505	0.4658	1.2234	1.8286	1.0126	0.0917	0.2849
0.790	0.8890	0.6625	0.7452	0.4711	1.2288	1.8547	1.0103	0.0816	0.2894
0.800	0.8865	0.6560	0.7400	0.4764	1.2338	1.8808	1.0081	0.0723	0.2939
0.810	0.8840	0.6495	0.7347	0.4817	1.2386	1.9070	1.0060	0.0638	0.2983
0.820	0.8815	0.6430	0.7295	0.4869	1.2431	1.9333	1.0041	0.0559	0.3026
0.830	0.8789	0.6365	0.7242	0.4921	1.2474	1.9598	1.0024	0.0488	0.3069
0.840	0.8763	0.6300	0.7189	0.4973	1.2514	1.9863	1.0008	0.0423	0.3112
0.850	0.8737	0.6235	0.7136	0.5025	1.2551	2.0129	0.9993	0.0363	0.3153
0.860	0.8711	0.6170	0.7083	0.5077	1.2585	2.0396	0.9979	0.0310	0.3195
0.870	0.8685	0.6106	0.7030	0.5128	1.2617	2.0665	0.9967	0.0261	0.3235
0.880	0.8659	0.6041	0.6977	0.5179	1.2646	2.0934	0.9956	0.0218	0.3275
0.890	0.8632	0.5977	0.6924	0.5230	1.2673	2.1204	0.9946	0.0179	0.3314
0.900	0.8606	0.5913	0.6870	0.5280	1.2698	2.1476	0.9937	0.0145	0.3352
0.910	0.8579	0.5849	0.6817	0.5331	1.2719	2.1748	0.9929	0.0115	0.3390
0.920	0.8552	0.5785	0.6764	0.5381	1.2739	2.2021	0.9922	0.0089	0.3427
0.930	0.8525	0.5721	0.6711	0.5431	1.2756	2.2296	0.9916	0.0067	0.3464
0.940	0.8498	0.5658	0.6658	0.5481	1.2770	2.2572	0.9911	0.0048	0.3499
0.950	0.8471	0.5595	0.6604	0.5530	1.2783	2.2848	0.9907	0.0033	0.3534
0.960	0.8444	0.5532	0.6551	0.5579	1.2793	2.3126	0.9903	0.0021	0.3569
0.970	0.8416	0.5469	0.6498	0.5628	1.2800	2.3405	0.9901	0.0011	0.3602
0.980	0.8389	0.5407	0.6445	0.5677	1.2806	2.3685	0.9899	0.0005	0.3635
0.990	0.8361	0.5345	0.6392	0.5725	1.2809	2.3966	0.9898	0.0001	0.3667
1.000	0.8333	0.5283	0.6339	0.5774	1.2810	2.4249	0.9897	0.0000	0.3698

GAS FLOW TABLES $(\gamma=1.400)$: SUPERSONIC FLOW bhid shode																
M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\text {max }}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	${\frac{P_{5}}{P}}_{\text {ah }}$	$\frac{P_{0 s}}{P}$	$\frac{T_{s}}{T}$	v	M
1.010	0.8306	0.5221	0.6287	0.5821	1.2809	2.4532	0.9898	0.0001	0.3728	0.9901	1.0000	1.0235	1.9152	1.0066	0.0	1.010
1.020	0.8278	0.5160	0.6234	0.5869	1.2806	2.4817	0.9899	0.0005	0.3758	0.9805	1.0000	1.0471	1.9379	1.0132	0.13	1.020
1.030	0.8250	0.5099	0.6181	0.5917	1.2801	2.5103	0.9900	0.0010	0.3787	0.9712	1.0000	1.0711	1.9610	1.0198	0.23	1.030
1.040	0.8222	0.5039	0.6129	0.5964	1.2793	2.5390	0.9903	0.0018	0.3815	0.9620	0.9999	1.0952	1.9844	1.0263	0.3	1.040
1.050	0.8193	0.4979	0.6077	0.6011	1.2784	2.5678	0.9905	0.0027	0.3842	0.9531	0.9999	1.1196	2.0083	1.0328	0.49	1.050
1.060	0.8165	0.4919	0.6024	0.6058	1.2773	2.5967	0.9909	0.0038	0.3869	0.9444	0.9998	1.1442	2.0325	1.0393	0.64	1.060
1.070	0.8137	0.4860	0.5972	0.6104	1.2760	2.6258	0.9913	0.0051	0.3895	0.9360	0.9996	1.1691	2.0570	1.0458	0.80	1.070
1.080	0.8108	0.4800	0.5920	0.6151	1.2745	2.6549	0.9917	0.0066	0.3919	0.9277	0.9994	1.1941	2.0819	1.0522	0.97	1.080
1.090	0.8080	0.4742	0.5869	0.6197	1.2728	2.6842	0.9922	0.0082	0.3944	0.9196	0.9992	1.2195	2.1072	1.0586	1.15	1.090
1.100	0.8052	0.4684	0.5817	0.6243	1.2709	2.7136	0.9928	0.0099	0.3967	0.9118	0.9989	1.2450	2.1328	1.0649	1.34	1.100
1.110	0.8023	0.4626	0.5766	0.6288	1.2689	2.7432	0.9934	0.0118	0.3990	0.9041	0.9986	1.2708	2.1588	1.0713	1.53	1.110
1.120	0.7994	0.4568	0.5714	0.6333	1.2667	2.7728	0.9940	0.0138	0.4011	0.8966	0.9982	1.2968	2.1851	1.0776	74	1.120
1.130	0.7966	0.4511	0.5663	0.6379	1.2643	2.8026	0.9947	0.0159	0.4032	0.8892	0.9978	1.3231	2.2118	1.0840	1.94	1.130
1.140	0.7937	0.4455	0.5612	0.6423	1.2618	2.8325	0.9954	0.0182	0.4052	0.8820	0.9973	1.3495	2.2388	1.0903	2.16	1.140
1.150	0.7908	0.4398	0.5562	0.6468	1.2590	2.8626	0.9961	0.0205	0.4072	0.8750	0.9967	1.3763	2.2661	1.0966	2.38	1.150
1.160	0.7879	0.4343	0.5511	0.6512	1.2562	2.8927	0.9969	0.0230	0.4090	0.8682	0.9961	1.4032	2.2937	1.1029	2.61	1.160
1.170	0.7851	0.4287	0.5461	0.6556	1.2531	2.9230	0.9978	0.0255	0.4108	0.8615	0.9953	1.4304	2.3217	1.1092	2.84	1.170
1.180	0.7822	0.4232	0.5411	0.6600	1.2500	2.9534	0.9986	0.0281	0.4125	0.8549	0.9946	1.4578	2.3500	1.1154	3.07	1.180
1.190	0.7793	0.4178	0.5361	0.6644	1.2466	2.9840	0.9995	0.0309	0.4141	0.8485	0.9937	1.4855	2.3786	1.1217	3.31	1.190
1.200	0.7764	0.4124	0.5311	0.6687	1.2432	3.0147	1.0004	0.0336	0.4157	0.8422	0.9928	1.5133	2.4075	1.1280	3.56	1.200
1.210	0.7735	0.4070	0.5262	0.6730	1.2396	3.0455	1.0014	0.0365	0.4171	0.8360	0.9918	1.5415	2.4367	1.1343	3.81	1.210
1.220	0.7706	0.4017	0.5213	0.6773	1.2358	3.0764	1.0024	0.0394	0.4185	0.8300	0.9907	1.5698	2.4663	1.1405	4.06	1.220
1.230	0.7677	0.3964	0.5164	0.6816	1.2319	3.1075	1.0034	0.0424	0.4198	0.8241	0.9896	1.5984	2.4961	1.1468	4.31	1.230
1.240	0.7648	0.3912	0.5115	0.6858	1.2279	3.1387	1.0045	0.0455	0.4211	0.8183	0.9884	1.6272	2.5263	1.1531	4.57	1.240
1.250	0.7619	0.3861	0.5067	0.6901	1.2238	3.1700	1.0055	0.0486	0.4223	0.8126	0.9871	1.6563	2.5568	1.1594	4.83	1.250

$\gamma=1.400$

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\operatorname{ma}}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{s}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{S}}{T}$	v	M
1.260	0.7590	0.3809	0.5019	0.6943	1.2195	3.2015	1.0066	0.0517	0.4233	0.8071	0.9857	1.6855	2.5875	1.1657	5.09	1.260
1.270	0.7561	0.3759	0.4971	0.6984	1.2152	3.2331	1.0077	0.0549	0.4244	0.8016	0.9842	1.7151	2.6186	1.1720	5.36	1.270
1.280	0.7532	0.3708	0.4923	0.7026	1.2107	3.2648	1.0089	0.0582	0.4253	0.7963	0.9827	1.7448	2.6500	1.1783	5.63	1.280
1.290	0.7503	0.3658	0.4876	0.7067	1.2061	3.2967	1.0100	0.0615	0.4262	0.7911	0.9811	1.7748	2.6816	1.1846	5.90	1.290
1.300	0.7474	0.3609	0.4829	0.7108	1.2014	3.3287	1.0112	0.0648	0.4270	0.7860	0.9794	1.8050	2.7136	1.1909	6.17	1.300
1.310	0.7445	0.3560	0.4782	0.7149	1.1965	3.3608	1.0124	0.0682	0.4277	0.7809	0.9776	1.8355	2.7459	1.1972	6.44	1.310
1.320	0.7416	0.3512	0.4736	0.7189	1.1916	3.3931	1.0136	0.0716	0.4283	0.7760	0.9758	1.8661	2.7784	1.2035	6.72	1.320
1.330	0.7387	0.3464	0.4690	0.7229	1.1866	3.4255	1.0149	0.0750	0.4289	0.7712	0.9738	1.8971	2.8112	1.2099	7.00	1.330
1.340	0.7358	0.3417	0.4644	0.7270	1.1815	3.4581	1.0161	0.0785	0.4294	0.7664	0.9718	1.9282	2.8444	1.2162	7.28	1.340
1.350	0.7329	0.3370	0.4598	0.7309	1.1763	3.4907	1.0174	0.0820	0.4299	0.7618	0.9697	1.9596	2.8778	1.2226	7.56	1.350
1.360	0.7300	0.3323	0.4553	0.7349	1.1710	3.5236	1.0187	0.0855	0.4303	0.7572	0.9676	1.9912	2.9115	1.2290	7.84	1.360
1.370	0.7271	0.3277	0.4508	0.7388	1.1656	3.5566	1.0200	0.0890	0.4306	0.7527	0.9653	2.0231	2.9455	1.2354	8.13	1.370
1.380	0.7242	0.3232	0.4463	0.7427	1.1601	3.5897	1.0213	0.0926	0.4308	0.7483	0.9630	2.0551	2.9798	1.2418	8.41	1.380
1.390	0.7213	0.3187	0.4418	0.7466	1.1546	3.6229	1.0226	0.0962	0.4310	0.7440	0.9607	2.0875	3.0144	1.2482	8.70	1.390
1.400	0.7184	0.3142	0.4374	0.7505	1.1490	3.6563	1.0240	0.0997	0.4311	0.7397	0.9582	2.1200	3.0492	1.2547	8.99	1.400
1.410	0.7155	0.3098	0.4330	0.7543	1.1433	3.6899	1.0253	0.1033	0.4312	0.7355	0.9557	2.1528	3.0844	1.2612	9.28	1.410
1.420	0.7126	0.3055	0.4287	0.7581	1.1375	3.7236	1.0267	0.1069	0.4312	0.7314	0.9531	2.1858	3.1198	1.2676	9.57	1.420
1.430	0.7097	0.3012	0.4244	0.7619	1.1317	3.7574	1.0281	0.1106	0.4311	0.7274	0.9504	2.2191	3.1555	1.2741	9.86	1.430
1.440	0.7069	0.2969	0.4201	0.7657	1.1258	3.7914	1.0295	0.1142	0.4310	0.7235	0.9476	2.2525	3.1915	1.2807	10.15	1.440
1.450	0.7040	0.2927	0.4158	0.7694	1.1198	3.8255	1.0308	0.1178	0.4308	0.7196	0.9448	2.2863	3.2278	1.2872	10.44	1.450
1.460	0.7011	0.2886	0.4196	0.7732	1.1138	3.8598	1.0323	0.1215	0.4306	0.7157	0.9420	2.3202	3.2643	1.2938	10.73	1.460
1.470	0.6982	0.2845	0.4074	0.7769	1.1077	3.8942	1.0337	0.1251	0.4303	0.7120	0.9390	2.3544	3.3011	1.3003	11.02	1.470
1.480	0.6954	0.2804	0.4032	0.7805	1.1016	3.9287	1.0351	0.1288	0.4299	0.7083	0.9360	2.3888	3.3382	1.3069	11.32	1.480
1.490	0.6925	0.2764	0.3991	0.7842	1.0954	3.9634	1.0365	0.1324	0.4295	0.7047	0.9329	2.4235	3.3756	1.3136	11.61	1.490
1.500	0.6897	0.2724	0.3950	0.7878	1.0891	3.9983	1.0379	0.1361	0.4290	0.7011	0.9298	2.4583	3.4133	1.3202	11.91	1.500

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{S}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{s}}{T}$	v	M
1.510	0.6868	0.2685	0.3909	0.7914	1.0829	4.0333	1.0394	0.1397	0.4285	0.6976	0.9266	2.4935	3.4512	1.3269	12.20	1.510
1.520	0.6840	0.2646	0.3869	0.7950	1.0765	4.0684	1.0408	0.1433	0.4279	0.6941	0.9233	2.5288	3.4894	1.3336	12.49	1.520
1.530	0.6811	0.2608	0.3829	0.7986	1.0702	4.1037	1.0423	0.1470	0.4273	0.6907	0.9200	2.5644	3.5279	1.3403	12.79	1.530
1.540	0.6783	0.2570	0.3789	0.8021	1.0638	4.1392	1.0437	0.1506	0.4266	0.6874	0.9166	2.6002	3.5667	1.3470	13.09	1.540
1.550	0.6754	0.2533	0.3750	0.8057	1.0573	4.1748	1.0452	0.1543	0.4259	0.6841	0.9132	2.6363	3.6057	1.3538	13.38	1.550
1.560	0.6726	0.2496	0.3710	0.8092	1.0508	4.2105	1.0467	0.1579	0.4252	0.6809	0.9097	2.6725	3.6450	1.3606	13.68	1.560
1.570	0.6698	0.2459	0.3672	0.8126	1.0443	4.2464	1.0481	0.1615	0.4243	0.6777	0.9062	2.7091	3.6846	1.3674	13.97	1.570
1.580	0.6670	0.2423	0.3633	0.8161	1.0378	4.2825	1.0496	0.1651	0.4235	0.6746	0.9026	2.7458	3.7244	1.3742	14.27	1.580
1.590	0.6642	0.2388	0.3595	0.8195	1.0312	4.3187	1.0511	0.1688	0.4226	0.6715	0.8989	2.7828	3.7646	1.3811	14.56	1.590
1.600	0.6614	0.2353	0.3557	0.8230	1.0246	4.3551	1.0526	0.1724	0.4216	0.6684	0.8952	2.8200	3.8050	1.3880	14.86	1.600
1.610	0.6586	0.2318	0.3520	0.8263	1.0180	4.3916	1.0541	0.1760	0.4206	0.6655	0.8915	2.8575	3.8456	1.3949	15.16	1.610
1.620	0.6558	0.2284	0.3483	0.8297	1.0114	4.4282	1.0555	0.1795	0.4196	0.6625	0.8877	2.8951	3.8866	1.4018	15.45	1.620
1.630	0.6530	0.2250	0.3446	0.8331	1.0047	4.4651	1.0570	0.1831	0.4185	0.6596	0.8838	2.9331	3.9278	1.4088	15.75	1.630
1.640	0.6502	0.2217	0.3409	0.8364	0.9980	4.5020	1.0585	0.1867	0.4174	0.6568	0.8799	2.9712	3.9693	1.4158	16.04	1.640
1.650	0.6475	0.2184	0.3373	0.8397	0.9913	4.5392	1.0600	0.1902	0.4162	0.6540	0.8760	3.0096	4.0110	1.4228	16.34	1.650
1.660	0.6447	0.2151	0.3337	0.8430	0.9846	4.5765	1.0615	0.1938	0.4150	0.6512	0.8720	3.0482	4.0531	1.4299	16.63	1.660
1.670	0.6419	0.2119	0.3302	0.8462	0.9779	4.6139	1.0630	0.1973	0.4138	0.6485	0.8680	3.0871	4.0953	1.4369	16.93	1.670
1.680	0.6392	0.2088	0.3266	0.8495	0.9712	4.6515	1.0645	0.2008	0.4125	0.6458	0.8639	3.1261	4.1379	1.4440	17.22	1,680
1.690	0.6364	0.2057	0.3232	0.8527	0.9644	4.6892	1.0660	0.2043	0.4112	0.6431	0.8599	3.1655	4.1807	1.4512	17.52	1.690
1.700	0.6337	0.2026	0.3197	0.8559	0.9577	4.7272	1.0674	0.2078	0.4098	0.6405	0.8557	3.2050	4.2238	1.4583	17.81	1.700
1.710	0.6310	0.1996	0.3163	0.8591	0.9509	4.7652	1.0689	0.2113	0.4085	0.6380	0.8516	3.2448	4.2672	1.4655	18.10	1.710
1.720	0.6283	0.1966	0.3129	0.8622	0.9442	4.8035	1.0704	0.2147	0.4071	0.6355	0.8474	3.2848	4.3108	1.4727	18.40	1.720
1.730	0.6256	0.1936	0.3095	0.8654	0.9374	4.8418	1.0719	0.2182	0.4056	0.6330	0.8431	3.3251	4.3547	1.4800	18.69	1.730
1.740	0.6229	0.1907	0.3062	0.8685	0.9307	4.8804	1.0734	0.2216	0.4041	0.6305	0.8389	3.3655	4.3989	1.4873	18.98	1.740
1.750	0.6202	0.1878	0.3029	0.8716	0.9239	4.9191	1.0749	0.2250	0.4026	0.6281	0.8346	3.4063	4.4433	1.4946	19.27	1.750

$\gamma=1.400$

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\operatorname{ma}}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{s}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{s}}{T}$	v	M
1.760	0.6175	0.1850	0.2996	0.8747	0.9172	4.9580	1.0764	0.2284	0.4011	0.6257	0.8302	3.4472	4.4880	1.5019	19.56	1.760
1.770	0.6148	0.1822	0.2964	0.8777	0.9104	4.9970	1.0779	0.2318	0.3996	0.6234	0.8259	3.4884	4.5330	1.5093	19.86	1.770
1.780	0.6121	0.1794	0.2931	0.8808	0.9037	5.0362	1.0793	0.2352	0.3980	0.6210	0.8215	3.5298	4.5782	1.5167	20.15	1.780
1.790	0.6095	0.1767	0.2900	0.8838	0.8970	5.0755	1.0808	0.2385	0.3964	0.6188	0.8171	3.5715	4.6237	1.5241	20.44	1.790
1.800	0.6068	0.1740	0.2868	0.8868	0.8902	5.1150	1.0823	0.2419	0.3947	0.6165	0.8127	3.6133	4.6695	1.5316	20.73	1.800
1.810	0.6041	0.1714	0.2837	0.8898	0.8835	5.1547	1.0838	0.2452	0.3931	0.6143	0.8082	3.6555	4.7155	1.5391	21.01	1.810
1.820	0.6015	0.1688	0.2806	0.8927	0.8768	5.1945	1.0852	0.2485	0.3914	0.6121	0.8038	3.6978	4.7618	1.5466	21.30	1.820
1.830	0.5989	0.1662	0.2776	0.8957	0.8701	5.2345	1.0867	0.2518	0.3897	0.6099	0.7993	3.7404	4.8084	1.5541	21.59	1.830
1.840	0.5963	0.1637	0.2745	0.8986	0.8634	5.2747	1.0882	0.2551	0.3879	0.6078	0.7948	3.7832	4.8552	1.5617	21.88	1.840
1.850	0.5936	0.1612	0.2715	0.9015	0.8568	5.3150	1.0896	0.2583	0.3862	0.6057	0.7902	3.8263	4.9023	1.5693	22.16	1.850
1.860	0.5910	0.1587	0.2686	0.9044	0.8501	5.3555	1.0911	0.2616	0.3844	0.6036	0.7857	3.8695	4.9497	1.5770	22.45	1.860
1.870	0.5884	0.1563	0.2656	0.9072	0.8435	5.3962	1.0926	0.2648	0.3826	0.6016	0.7811	3.9131	4.9973	1.5847	22.73	1.870
1.880	0.5859	0.1539	0.2627	0.9101	0.8368	5.4370	1.0940	0.2680	0.3808	0.5996	0.7765	3.9568	5.0452	1.5924	23.02	1.880
1.890	0.5833	0.1516	0.2598	0.9129	0.8302	5.4780	1.0955	0.2712	0.3790	0.5976	0.7720	4.0008	5.0934	1.6001	23.30	1.890
1.900	0.5807	0.1492	0.2570	0.9157	0.8237	5.5191	1.0969	0.2743	0.3771	0.5956	0.7674	4.0450	5.1418	1.6079	23.59	1.900
1.910	0.5782	0.1470	0.2542	0.9185	0.8171	5.5604	1.0984	0.2775	0.3753	0.5937	0.7627	4.0895	5.1905	1.6157	23.87	1.910
1.920	0.5756	0.1447	0.2514	0.9213	0.8106	5.6019	1.0998	0.2806	0.3734	0.5918	0.7581	4.1341	5.2394	1.6236	24.15	1.920
1.930	0.5731	0.1425	0.2486	0.9240	0.8041	5.6435	1.1012	0.2837	0.3715	0.5899	0.7535	4.1791	5.2886	1.6314	24.43	1.930
1.940	0.5705	0.1403	0.2459	0.9268	0.7976	5.6853	1.1027	0.2868	0.3696	0.5880	0.7488	4.2242	5.3381	1.6394	24.71	1.940
1.950	0.5680	0.1381	0.2432	0.9295	0.7911	5.7273	1.1041	0.2899	0.3677	0.5862	0.7442	4.2696	5.3878	1.6473	24.99	1.950
1.960	0.5655	0.1360	0.2405	0.9322	0.7846	5.7695	1.1055	0.2929	0.3657	0.5844	0.7395	4.3152	5.4378	1.6553	25.27	1.960
1.970	0.5630	0.1339	0.2378	0.9349	0.7782	5.8118	1.1069	0.2960	0.3638	0.5826	0.7349	4.3611	5.4881	1.6633	25.55	1.970
1.980	0.5605	0.1318	0.2352	0.9375	0.7718	5.8542	1.1084	0.2990	0.3618	0.5808	0.7302	4.4071	5.5386	1.6713	25.83	1.980
1.990	0.5580	0.1298	0.2326	0.9402	0.7655	5.8969	1.1098	0.3020	0.3598	0.5791	0.7255	4.4535	5.5894	1.6794	26.10	1.990
2.000	0.5556	0.1278	0.2300	0.9428	0.7591	5.9397	1.1112	0.3050	0.3579	0.5774	0.7209	4.5000	5.6404	1.6875	26.38	2.000

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\text {max }}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{S}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{s}}{T}$	v	M
2.010	0.5531	0.1258	0.2275	0.9454	0.7528	5.9827	1.1126	0.3080	0.3559	0.5757	0.7162	4.5468	5.6918	1.6956	26.66	2.010
2.020	0.5506	0.1239	0.2250	0.9480	0.7465	6.0258	1.1140	0.3109	0.3539	0.5740	0.7115	4.5938	5.7433	1.7038	26.93	2.020
2.030	0.5482	0.1220	0.2225	0.9506	0.7403	6.0692	1.1154	0.3138	0.3518	0.5723	0.7069	4.6411	5.7952	1.7120	27.20	2.030
2.040	0.5458	0.1201	0.2200	0.9531	0.7340	6.1126	1.1167	0.3168	0.3498	0.5707	0.7022	4.6885	5.8473	1.7203	27.48	2.040
2.050	0.5433	0.1182	0.2176	0.9557	0.7279	6.1563	1.1181	0.3197	0.3478	0.5691	0.6975	4.7363	5.8996	1.7285	27.75	2.050
2.060	0.5409	0.1164	0.2152	0.9582	0.7217	6.2001	1.1195	0.3225	0.3458	0.5675	0.6928	4.7842	5.9523	1.7369	28.02	2.060
2.070	0.5385	0.1146	0.2128	0.9607	0.7156	6.2441	1.1209	0.3254	0.3437	0.5659	0.6882	4.8324	6.0051	1.7452	28.29	2.070
2.080	0.5361	0.1128	0.2104	0.9632	0.7095	6.2883	1.1222	0.3282	0.3417	0.5643	0.6835	4.8808	6.0583	1.7536	28.56	2.080
2.090	0.5337	0.1111	0.2081	0.9657	0.7034	6.3326	1.1236	0.3310	0.3396	0.5628	0.6789	4.9295	6.1117	1.7620	28.83	2.090
2.100	0.5313	0.1094	0.2058	0.9681	0.6974	6.3772	1.1250	0.3339	0.3376	0.5613	0.6742	4.9783	6.1654	1.7705	29.10	2.100
2.110	0.5290	0.1077	0.2035	0.9706	0.6914	6.4218	1.1263	0.3366	0.3355	0.5598	0.6696	5.0275	6.2193	1.7789	29.36	2.110
2.120	0.5266	0.1060	0.2013	0.9730	0.6854	6.4667	1.1276	0.3394	0.3334	0.5583	0.6649	5.0768	6.2735	1.7875	29.63	2.120
2.130	0.5243	0.1043	0.1990	0.9754	0.6795	6.5117	1.1290	0.3422	0.3314	0.5568	0.6603	5.1264	6.3280	1.7960	29.90	2.130
2.140	0.5219	0.1027	0.1968	0.9778	0.6736	6.5569	1.1303	0.3449	0.3293	0.5554	0.6557	5.1762	6.3827	1.8046	30.16	2.140
2.150	0.5196	0.1011	0.1946	0.9802	0.6677	6.6023	1.1317	0.3476	0.3272	0.5540	0.6511	5.2263	6.4377	1.8132	30.43	2.150
2.160	0.5173	0.0996	0.1925	0.9825	0.6619	6.6478	1.1330	0.3503	0.3252	0.5525	0.6464	5.2765	6.4929	1.8219	30.69	2.160
2.170	0.5150	0.0980	0.1903	0.9849	0.6561	6.6936	1.1343	0.3530	0.3231	0.5511	0.6419	5.3271	6.5484	1.8306	30.95	2.170
2.180	0.5127	0.0965	0.1882	0.9872	0.6503	6.7395	1.1356	0.3556	0.3210	0.5498	0.6373	5.3778	6.6042	1.8393	31.21	2.180
2.190	0.5104	0.0950	0.1861	0.9895	0.6446	6.7855	1.1369	0.3583	0.3189	0.5484	0.6327	5.4288	6.6602	1.8481	31.47	2.190
2.200	0.5081	0.0935	0.1841	0.9918	\$0.6389	6.8318	1.1382	0.3609	0.3169	0.5471	0.6281	5.4800	6.7165	1.8569	31.73	2.200
2.210	0.5059	0.0921	0.1820	0.9941	0.6333	6.8782	1.1395	0.3635	0.3148	0.5457	0.6236	5.5315	6.7730	1.8657	31.99	2.210
2.220	0.5036	0.0906	0.1800	0.9964	0.6277	6.9248	1.1408	0.3661	0.3127	0.5444	0.6191	5.5831	6.8298	1.8746	32.25	2.220
2.230	0.5014	0.0892	0.1780	0.9986	0.6221	6.9715	1.1421	0.3687	0.3106	0.5431	0.6145	5.6351	6.8869	1.8835	32.51	2.230
2.240	0.4991	0.0878	0.1760	1.0009	0.6165	7.0185	1.1434	0.3712	0.3085	0.5418	0.6100	5.6872	6.9442	1.8924	32.76	2.240
2.250	0.4969	0.0865	0.1740	1.0031	0.6110	7.0656	1.1446	0.3738	0.3065	0.5406	0.6055	5.7396	7.0018	1.9014	33.02	2.250

$\gamma=1.400$

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\mathrm{m}}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{s}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{S}}{T}$	v	M
2.260	0.4947	0.0851	0.1721	1.0053	0.6056	7.1129	1.1459	0.3763	0.3044	0.5393	0.6011	5.7922	7.0597	1.9104	33.27	2.260
2.270	0.4925	0.0838	0.1702	1.0075	0.6002	7.1603	1.1472	0.3788	0.3023	0.5381	0.5966	5.8451	7.1178	1.9194	33.53	2.270
2.280	0.4903	0.0825	0.1683	1.0097	0.5948	7.2080	1.1484	0.3813	0.3003	0.5368	0.5921	5.8981	7.1762	1.9285	33.78	2.280
2.290	0.4881	0.0812	0.1664	1.0118	0.5894	7.2558	1.1497	0.3838	0.2982	0.5356	0.5877	5.9515	7.2348	1.9376	34.03	2.290
2.300	0.4859	0.0800	0.1646	1.0140	0.5841	7.3038	1.1509	0.3862	0.2961	0.5344	0.5833	6.0050	7.2937	1.9468	34.28	2.300
2.310	0.4837	0.0787	0.1628	1.0161	0.5788	7.3520	1.1521	0.3887	0.2941	0.5332	0.5789	6.0588	7.3528	1.9560	34.53	2.310
2.320	0.4816	0.0775	0.1609	1.0182	0.5736	7.4003	1.1534	0.3911	0.2920	0.5321	0.5745	6.1128	7.4122	1.9652	34.78	2.320
2.330	0.4794	0.0763	0.1592	1.0204	0.5684	7.4488	1.1546	0.3935	0.2900	0.5309	0.5702	6.1671	7.4719	1.9745	35.03	2.330
2.340	0.4773	0.0751	0.1574	1.0224	0.5632	7.4975	1.1558	0.3959	0.2879	0.5297	0.5658	6.2215	7.5319	1.9838	35.28	2.340
2.350	0.4752	0.0740	0.1556	1.0245	0.5581	7.5464	1.1570	0.3983	0.2859	0.5286	0.5615	6.2763	7.5920	1.9931	35.53	2.350
2.360	0.4731	0.0728	0.1539	1.0266	0.5530	7.5955	1.1582	0.4006	0.2839	0.5275	0.5572	6.3312	7.6525	2.0025	35.77	2.360
2.370	0.4709	0.0717	0.1522	1.0286	0.5480	7.6447	1.1595	0.4030	0.2818	0.5264	0.5529	6.3864	7.7132	2.0119	36.02	2.370
2.380	0.4688	0.0706	0.1505	1.0307	0.5430	7.6941	1.1606	0.4053	0.2798	0.5253	0.5486	6.4418	7.7742	2.0213	36.26	2.380
2.390	0.4668	0.0695	0.1488	1.0327	0.5380	7.7437	1.1618	0.4076	0.2778	0.5242	0.5444	6.4975	7.8354	2.0308	36.50	2.390
2.400	0.4647	0.0684	0.1472	1.0347	0.5331	7.7935	1.1630	0.4099	0.2758	0.5231	0.5401	6.5533	7.8969	2.0403	36.75	2.400
2.410	0.4626	0.0673	0.1456	1.0367	0.5282	7.8434	1.1642	0.4122	0.2738	0.5221	0.5359	6.6095	7.9587	2.0499	36.99	2.410
2.420	0.4606	0.0663	0.1439	1.0387	0.5233	7.8935	1.1654	0.4144	0.2718	0.5210	0.5317	6.6658	8.0207	2.0595	37.23	2.420
2.430	0.4585	0.0653	0.1424	1.0407	0.5185	7.9438	1.1665	0.4167	0.2698	0.5200	0.5276	6.7224	8.0830	2.0691	37.47	2.430
2.440	0.4565	0.0643	0.1408	1.0426	0.5137	7.9943	1.1677	0.4189	0.2678	0.5189	0.5234	6.7792	8.1455	2.0788	37.71	2.440
2.450	0.4544	0.0633	0.1392	1.0446	0.5090	8.0450	1.1689	0.4211	0.2658	0.5179	0.5193	6.8363	8.2083	2.0885	37.95	2.450
2.460	0.4524	0.0623	0.1377	1.0465	0.5043	8.0958	1.1700	0.4233	0.2639	0.5169	0.5152	6.8935	8.2713	2.0982	38.18	2.460
2.470	0.4504	0.0613	0.1362	1.0484	0.4996	8.1468	1.1712	0.4255	0.2619	0.5159	0.5111	6.9511	8.3346	2.1080	38.42	2.470
2.480	0.4484	0.0604	0.1346	1.0503	0.4950	8.1980	1.1723	0.4277	0.2599	0.5149	0.5071	7.0088	8.3982	2.1178	38.66	2.480
2.490	0.4464	0.0594	0.1332	1.0522	0.4904	8.2494	1.1734	0.4298	0.2580	0.5140	0.5030	7.0668	8.4620	2.1276	38.89	2.490
2.500	0.4444	0.0585	0.1317	1.0541	0.4858	8.3010	1.1746	0.4320	0.2561	0.5130	0.4990	7.1250	8.5261	2.1375	39.12	2.500

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\text {max }}}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{S}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{S}}{T}$	v	M
2.510	0.4425	0.0576	0.1302	1.0560	0.4813	8.3527	1.1757	0.4341	0.2541	0.5120	0.4950	7.1835	8.5905	2.1474	39.36	2.510
2.520	0.4405	0.0567	0.1288	1.0578	0.4768	8.4046	1.1768	0.4362	0.2522	0.5111	0.4911	7.2421	8.6551	2.1574	39.59	2.520
2.530	0.4386	0.0559	0.1274	1.0597	0.4724	8.4567	1.1779	0.4383	0.2503	0.5102	0.4871	7.3011	8.7200	2.1674	39.82	2.530
2.540	0.4366	0.0550	0.1260	1.0615	0.4680	8.5090	1.1790	0.4404	0.2484	0.5092	0.4832	7.3602	8.7851	2.1774	40.05	2.540
2.550	0.4347	0.0542	0.1246	1.0633	0.4636	8.5615	1.1801	0.4425	0.2465	0.5083	0.4793	7.4196	8.8505	2.1875	40.28	2.550
2.560	0.4328	0.0533	0.1232	1.0651	0.4593	8.6141	1.1812	0.4445	0.2446	0.5074	0.4754	7.4792	8.9161	2.1976	40.51	2.560
2.570	0.4309	0.0525	0.1218	1.0669	0.4550	8.6670	1.1823	0.4466	0.2427	0.5065	0.4715	7.5391	8.9820	2.2077	40.74	2.570
2.580	0.4289	0.0517	0.1205	1.0687	0.4507	8.7200	1.1834	0.4486	0.2409	0.5056	0.4677	7.5991	9.0482	2.2179	40.96	2.580
2.590	0.4271	0.0509	0.1192	1.0705	0.4465	8.7732	1.1844	0.4506	0.2390	0.5047	0.4639	7.6595	9.1146	2.2281	41.19	2.590
2.600	0.4252	0.0501	0.1179	1.0722	0.4423	8.8265	1.1855	0.4526	0.2371	0.5039	0.4601	7.7200	9.1813	2.2383	41.41	2.600
2.610	0.4233	0.0493	0.1166	1.0740	0.4382	8.8801	1.1866	0.4546	0.2353	0.5030	0.4564	7.7808	9.2483	2.2486	41.64	2.610
2.620	0.4214	0.0486	0.1153	1.0757	0.4341	8.9338	1.1876	0.4565	0.2335	0.5022	0.4526	7.8418	9.3155	2.2590	41.86	2.620
2.630	0.4196	0.0478	0.1140	1.0774	0.4300	8.9877	1.1887	0.4585	0.2317	0.5013	0.4489	7.9031	9.3829	2.2693	42.09	2.630
2.640	0.4177	0.0471	0.1128	1.0791	0.4260	9.0418	1.1897	0.4604	0.2298	0.5005	0.4452	7.9645	9.4506	2.2797	42.31	2.640
2.650	0.4159	0.0464	0.1115	1.0808	0.4220	9.0961	1.1908	0.4624	0.2280	0.4996	0.4416	8.0263	9.5186	2.2902	42.53	2.650
2.660	0.4141	0.0457	0.1103	1.0825	0.4180	9.1506	1.1918	0.4643	0.2262	0.4988	0.4379	8.0882	9.5869	2.3006	42.75	2.660
2.670	0.4122	0.0450	0.1091	1.0842	0.4141	9.2052	1.1928	0.4662	0.2245	0.4980	0.4343	8.1504	9.6554	2.3111	42.97	2.670
2.680	0.4104	0.0443	0.1079	1.0859	0.4102	9.2601	1.1939	0.4681	0.2227	0.4972	0.4307	8.2128	9.7241	2.3217	43.19	2.680
2.690	0.4086	0.0436	0.1067	1.0875	0.4063	9.3151	1.1949	0.4700	0.2209	0.4964	0.4271	8.2755	9.7931	2.3323	43.40	2.690
2.700	0.4068	0.0430	0.1056	1.0892	0.4025	9.3703	1.1959	0.4718	0.2192	0.4956	0.4236	8.3383	9.8624	2.3429	43.62	2.700
2.710	0.4051	0.0423	0.1044	1.0908	0.3987	9.4257	1.1969	0.4737	0.2174	0.4949	0.4201	8.4015	9.9319	2.3536	43.84	2.710
2.720	0.4033	0.0417	0.1033	1.0924	0.3949	9.4812	1.1979	0.4755	0.2157	0.4941	0.4166	8.4648	10.0017	2.3642	44.05	2.720
2.730	0.4015	0.0410	0.1022	1.0941	0.3912	9.5370	1.1989	0.4773	0.2140	0.4933	0.4131	8.5284	10.0718	2.3750	44.27	2.730
2.740	0.3998	0.0404	0.1010	1.0957	0.3875	9.5929	1.1999	0.4791	0.2123	0.4926	0.4097	8.5922	10.1421	2.3858	44.48	2.740
2.750	0.3980	0.0398	0.0999	1.0973	0.3838	9.6490	1.2009	0.4809	0.2106	0.4918	0.4062	8.6563	10.2127	2.3966	44.69	2.750

$\gamma=1.400$

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$	M_{s}	$\frac{P_{0 s}}{P_{0}}$	$\frac{P_{S}}{P}$	$\frac{P_{0 s}}{P}$	$\frac{T_{S}}{T}$	V	M
2.760	0.3963	0.0392	0.0989	1.0988	0.3802	9.7053	1.2019	0.4827	0.2089	0.4911	0.4028	8.7205	10.2835	2.4074	44.91	2.760
2.770	0.3945	0.0386	0.0978	1.1004	0.3766	9.7618	1.2029	0.4845	0.2072	0.4903	0.3994	8.7851	10.3546	2.4183	45.12	2.770
2.780	0.3928	0.0380	0.0967	1.1020	0.3730	9.8185	1.2038	0.4863	0.2055	0.4896	0.3961	8.8498	10.4259	2.4292	45.33	2.780
2.790	0.3911	0.0374	0.0957	1.1035	0.3695	9.8753	1.2048	0.4880	0.2039	0.4889	0.3928	8.9148	10.4975	2.4402	45.54	2.790
2.800	0.3894	0.0368	0.0946	1.1051	0.3660	9.9324	1.2058	0.4898	0.2022	0.4882	0.3895	8.9800	10.5694	2.4512	45.75	2.800
2.810	0.3877	0.0363	0.0936	1.1066	0.3625	9.9896	1.2067	0.4915	0.2006	0.4875	0.3862	9.0455	10.6415	2.4622	45.95	2.810
2.820	0.3860	0.0357	0.0926	1.1081	0.3591	10.0470	1.2077	0.4932	0.1990	0.4868	0.3829	9.1111	10.7139	2.4733	46.16	2.820
2.830	0.3844	0.0352	0.0916	1.1096	0.3557	10.1046	1.2086	0.4949	0.1973	0.4861	0.3797	9.1771	10.7865	2.4844	46.37	2.830
2.840	0.3827	0.0347	0.0906	1.1111	0.3523	10.1624	1.2095	0.4966	0.1957	0.4854	0.3765	9.2432	10.8594	2.4955	46.57	2.840
2.850	0.3810	0.0341	0.0896	1.1126	0.3490	10.2204	1.2105	0.4983	0.1941	0.4847	0.3733	9.3096	10.9326	2.5067	46.78	2.850
2.860	0.3794	0.0336	0.0886	1.1141	0.3457	10.2785	1.2114	0.5000	0.1926	0.4840	0.3701	9.3762	11.0060	2.5179	46.98	2.860
2.870	0.3777	0.0331	0.0877	1.1156	0.3424	10.3368	1.2123	0.5016	0.1910	0.4833	0.3670	9.4431	11.0797	2.5292	47.19	2.870
2.880	0.3761	0.0326	0.0867	1.1171	0.3392	10.3954	1.2132	0.5033	0.1894	0.4827	0.3639	9.5101	11.1536	2.5405	47.39	2.880
2.890	0.3745	0.0321	0.0858	1.1185	0.3359	10.4541	1.2142	0.5049	0.1879	0.4820	0.3608	9.5775	11.2278	2.5518	47.59	2.890
2.900	0.3729	0.0317	0.0849	1.1199	0.3328	10.5130	1.2151	0.5065	0.1863	0.4814	0.3577	9.6450	11.3022	2.5632	47.79	2.900
2.910	0.3712	0.0312	0.0840	1.1214	0.3296	10.5720	1.2160	0.5081	0.1848	0.4807	0.3547	9.7128	11.3770	2.5746	47.99	2.910
2.920	0.3696	0.0307	0.0831	1.1228	0.3265	10.6313	1.2169	0.5097	0.1833	0.4801	0.3517	9.7808	11.4519	2.5861	48.19	2.920
2.930	0.3681	0.0302	0.0822	1.1242	0.3234	10.6908	1.2178	0.5113	0.1818	0.4795	0.3487	9.8491	11.5271	2.5976	48.39	2.930
2.940	0.3665	0.0298	0.0813	1.1256	0.3203	10.7504	1.2187	0.5129	0.1803	0.4788	0.3457	9.9175	11.6026	2.6091	48.59	2.940
2.950	0.3649	0.0293	0.0804	1.1270	0.3173	10.8102	1.2195	0.5145	0.1788	0.4782	0.3428	9.9863	11.6784	2.6206	48.78	2.950
2.960	0.3633	0.0289	0.0796	1.1284	0.3143	10.8702	1.2204	0.5160	0.1773	0.4776	0.3398	10.0552	11.7544	2.6322	48.98	2.960
2.970	0.3618	0.0285	0.0787	1.1298	0.3113	10.9304	1.2213	0.5176	0.1758	0.4770	0.3369	10.1244	11.8306	2.6439	49.18	2.970
2.980	0.3602	0.0281	0.0779	1.1312	0.3083	10.9908	1.2222	0.5191	0.1744	0.4764	0.3340	10.1938	11.9072	2.6555	49.37	2.980
2.990	0.3587	0.0276	0.0770	1.1325	0.3054	11.0514	1.2230	0.5206	0.1729	0.4758	0.3312	10.2635	11.9839	2.6673	49.56	2.990
3.000	0.3571	0.0272	0.0762	1.1339	0.3025	11.1122	1.2239	0.5222	0.1715	0.4752	0.3283	10.3333	12.0610	2.6790	49.76	3.000

GAS FLOW TABLES ($\gamma=1.333$): SUBSONIC FLOW

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{m \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
0.010	1.0000	0.9999	1.0000	0.0058	0.0231	0.0231	43.2958	7493.200	0.0001
0.020	0.9999	0.9997	0.9998	0.0115	0.0462	0.0462	21.6560	1868.007	0.0003
0.030	0.9999	0.9994	0.9996	0.0173	0.0693	0.0693	14.4464	826.7890	0.0006
0.040	0.9997	0.9989	0.9992	0.0231	0.0923	0.0924	10.8442	462.6179	0.0011
0.050	0.9996	0.9983	0.9988	0.0288	0.1153	0.1155	8.6851	294.2161	0.0017
0.060	0.9994	0.9976	0.9982	0.0346	0.1383	0.1386	7.2475	202.8455	0.0024
0.070	0.9992	0.9967	0.9976	0.0404	0.1612	0.1618	6.2222	147.8292	0.0033
0.080	0.9989	0.9957	0.9968	0.0461	0.1841	0.1849	5.4546	112.1800	0.0042
0.090	0.9987	0.9946	0.9960	0.0519	0.2069	0.2080	4.8587	87.7848	0.0054
0.100	0.9983	0.9934	0.9950	0.0577	0.2297	0.2312	4.3831	70.3719	0.0066
0.110	0.9980	0.9920	0.9940	0.0634	0.2523	0.2544	3.9949	57.5186	0.0080
0.120	0.9976	0.9905	0.9928	0.0692	0.2749	0.2775	3.6724	47.7680	0.0095
0.130	0.9972	0.9888	0.9916	0.0749	0.2974	0.3007	3.4003	40.2012	0.0111
0.140	0.9967	0.9870	0.9903	0.0807	0.3197	0.3239	3.1678	34.2155	0.0129
0.150	0.9963	0.9851	0.9888	0.0864	0.3420	0.3471	2.9670	29.4027	0.0148
0.160	0.9958	0.9831	0.9873	0.0921	0.3641	0.3704	2.7920	25.4777	0.0168
0.170	0.9952	0.9810	0.9857	0.0979	0.3861	0.3936	2.6383	22.2372	0.0189
0.180	0.9946	0.9787	0.9840	0.1036	0.4080	0.4169	2.5022	19.5326	0.0211
0.190	0.9940	0.9763	0.9822	0.1093	0.4298	0.4402	2.3809	17.2536	0.0235
0.200	0.9934	0.9738	0.9803	0.1150	0.4514	0.4635	2.2724	15.3166	0.0260
0.210	0.9927	0.9711	0.9783	0.1207	0.4728	0.4869	2.1747	13.6578	0.0285
0.220	0.9920	0.9684	0.9762	0.1264	0.4941	0.5102	2.0863	12.2273	0.0312
0.230	0.9913	0.9655	0.9740	0.1321	0.5152	0.5336	2.0061	10.9859	0.0340
0.240	0.9905	0.9625	0.9717	0.1378	0.5362	0.5570	1.9330	9.9026	0.0370
0.250	0.9897	0.9594	0.9694	0.1435	0.5569	0.5805	1.8662	8.9522	0.0400
0.260	0.9889	0.9562	0.9669	0.1492	0.5775	0.6040	1.8049	8.1146	0.0431
0.270	0.9880	0.9529	0.9644	0.1549	0.5979	0.6275	1.7486	7.3731	0.0463
0.280	0.9871	0.9494	0.9618	0.1605	0.6181	0.6510	1.6966	6.7140	0.0496
0.290	0.9862	0.9459	0.9591	0.1662	0.6380	0.6746	1.6486	6.1261	0.0530
0.300	0.9852	0.9422	0.9563	0.1718	0.6578	0.6982	1.6042	5.5998	0.0565
0.310	0.9843	0.9384	0.9534	0.1775	0.6774	0.7218	1.5629	5.1272	0.0601
0.320	0.9832	0.9346	0.9505	0.1831	0.6967	0.7455	1.5245	4.7016	0.0638
0.330	0.9822	0.9306	0.9475	0.1887	0.7158	0.7692	1.4888	4.3173	0.0675
0.340	0.9811	0.9265	0.9444	0.1943	0.7347	0.7929	1.4555	3.9693	0.0714
0.350	0.9800	0.9224	0.9412	0.1999	0.7533	0.8167	1.4244	3.6535	0.0753
0.360	0.9789	0.9181	0.9379	0.2055	0.7717	0.8405	1.3953	3.3663	0.0793
0.370	0.9777	0.9137	0.9346	0.2111	0.7898	0.8644	1.3680	3.1046	0.0834
0.380	0.9765	0.9093	0.9311	0.2167	0.8077	0.8883	1.3425	2.8655	0.0875
0.390	0.9753	0.9047	0.9276	0.2223	0.8253	0.9122	1.3185	2.6469	0.0917
0.400	0.9741	0.9001	0.9241	0.2278	0.8427	0.9362	1.2959	2.4466	0.0960
0.410	0.9728	0.8954	0.9204	0.2334	0.8598	0.9603	1.2747	2.2627	0.1003
0.420	0.9715	0.8906	0.9167	0.2389	0.8766	0.9843	1.2548	2.0937	0.1047
0.430	0.9701	0.8857	0.9130	0.2444	0.8932	1.0085	1.2360	1.9382	0.1091
0.440	0.9688	0.8807	0.9091	0.2499	0.9095	1.0326	1.2183	1.7949	0.1136
0.450	0.9674	0.8757	0.9052	0.2554	0.9255	1.0569	1.2016	1.6627	0.1182
0.460	0.9660	0.8706	0.9012	0.2609	0.9412	1.0811	1.1858	1.5405	0.1228
0.470	0.9645	0.8654	0.8972	0.2664	0.9567	1.1055	1.1710	1.4276	0.1274
0.480	0.9631	0.8601	0.8931	0.2718	0.9718	1.1299	1.1569	1.3231	0.1321
0.490	0.9616	0.8548	0.8890	0.2773	0.9867	1.1543	1.1436	1.2263	0.1368
0.500	0.9600	0.8494	0.8847	0.2827	1.0012	1.1788	1.1310	1.1365	0.1415

$$
\gamma=1.333
$$

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
0.510	0.9585	0.8439	0.8805	0.2881	1.0155	1.2033	1.1192	1.0532	0.1463
0.520	0.9569	0.8384	0.8761	0.2935	1.0295	1.2279	1.1079	0.9759	0.1511
0.530	0.9553	0.8328	0.8717	0.2989	1.0431	1.2526	1.0973	0.9041	0.1559
0.540	0.9537	0.8271	0.8673	0.3043	1.0565	1.2773	1.0872	0.8373	0.1608
0.550	0.9520	0.8214	0.8628	0.3097	1.0696	1.3021	1.0777	0.7752	0.1656
0.560	0.9504	0.8157	0.8583	0.3150	1.0823	1.3269	1.0687	0.7174	0.1705
0.570	0.9487	0.8099	0.8537	0.3204	1.0948	1.3518	1.0601	0.6636	0.1754
0.580	0.9470	0.8040	0.8490	0.3257	1.1069	1.3768	1.0520	0.6136	0.1803
0.590	0.9452	0.7981	0.8443	0.3310	1.1188	1.4018	1.0444	0.5669	0.1852
0.600	0.9434	0.7921	0.8396	0.3363	1.1303	1.4269	1.0371	0.5235	0.1901
0.610	0.9417	0.7861	0.8348	0.3416	1.1415	1.4521	1.0303	0.4830	0.1950
0.620	0.9398	0.7801	0.8300	0.3469	1.1524	1.4773	1.0238	0.4452	0.1999
0.630	0.9380	0.7740	0.8252	0.3521	1.1630	1.5026	1.0176	0.4101	0.2048
0.640	0.9362	0.7679	0.8203	0.3573	1.1733	1.5280	1.0118	0.3773	0.2096
0.650	0.9343	0.7618	0.8153	0.3626	1.1833	1.5534	1.0063	0.3467	0.2145
0.660	0.9324	0.7556	0.8104	0.3678	1.1930	1.5789	1.0011	0.3183	0.2194
0.670	0.9305	0.7494	0.8054	0.3729	1.2023	1.6045	0.9962	0.2918	0.2242
0.680	0.9285	0.7431	0.8003	0.3781	1.2114	1.6301	0.9916	0.2671	0.2290
0.690	0.9266	0.7368	0.7953	0.3833	1.2201	1.6559	0.9872	0.2441	0.2338
0.700	0.9246	0.7306	0.7902	0.3884	1.2285	1.6817	0.9831	0.2227	0.2386
0.710	0.9226	0.7242	0.7850	0.3935	1.2367	1.7075	0.9792	0.2028	0.2433
0.720	0.9205	0.7179	0.7799	0.3986	1.2445	1.7335	0.9755	0.1843	0.2480
0.730	0.9185	0.7116	0.7747	0.4037	1.2520	1.7595	0.9721	0.1671	0.2527
0.740	0.9164	0.7052	0.7695	0.4088	1.2592	1.7856	0.9688	0.1512	0.2574
0.750	0.9144	0.6988	0.7643	0.4139	1.2661	1.8118	0.9658	0.1364	0.2620
0.760	0.9123	0.6924	0.7590	0.4189	1.2727	1.8381	0.9629	0.1227	0.2666
0.770	0.9102	0.6860	0.7537	0.4239	1.2790	1.8644	0.9603	0.1100	0.2711
0.780	0.9080	0.6796	0.7484	0.4289	1.2850	1.8908	0.9578	0.0983	0.2756
0.790	0.9059	0.6732	0.7431	0.4339	1.2907	1.9174	0.9554	0.0875	0.2800
0.800	0.9037	0.6668	0.7378	0.4389	1.2961	1.9440	0.9533	0.0776	0.2844
0.810	0.9015	0.6603	0.7325	0.4438	1.3013	1.9706	0.9513	0.0685	0.2888
0.820	0.8993	0.6539	0.7271	0.4487	1.3061	1.9974	0.9494	0.0601	0.2930
0.830	0.8971	0.6475	0.7217	0.4536	1.3107	2.0243	0.9477	0.0524	0.2973
0.840	0.8949	0.6411	0.7164	0.4585	1.3149	2.0512	0.9461	0.0454	0.3015
0.850	0.8926	0.6346	0.7110	0.4634	1.3189	2.0782	0.9446	0.0391	0.3056
0.860	0.8904	0.6282	0.7056	0.4683	1.3226	2.1053	0.9433	0.0333	0.3097
0.870	0.8881	0.6218	0.7002	0.4731	1.3260	2.1326	0.9420	0.0281	0.3137
0.880	0.8858	0.6154	0.6948	0.4779	1.3292	2.1599	0.9409	0.0235	0.3176
0.890	0.8835	0.6090	0.6893	0.4827	1.3321	2.1873	0.9399	0.0193	0.3215
0.900	0.8812	0.6026	0.6839	0.4875	1.3347	2.2147	0.9390	0.0156	0.3253
0.910	0.8788	0.5963	0.6785	0.4923	1.3370	2.2423	0.9383	0.0124	0.3291
0.920	0.8765	0.5899	0.6731	0.4970	1.3391	2.2700	0.9376	0.0096	0.3328
0.930	0.8741	0.5836	0.6676	0.5018	1.3410	2.2978	0.9370	0.0072	0.3364
0.940	0.8717	0.5773	0.6622	0.5065	1.3425	2.3256	0.9365	0.0052	0.3400
0.950	0.8694	0.5710	0.6568	0.5111	1.3439	2.3536	0.9360	0.0035	0.3435
0.960	0.8670	0.5647	0.6514	0.5158	1.3449	2.3817	0.9357	0.0022	0.3469
0.970	0.8646	0.5585	0.6459	0.5205	1.3458	2.4098	0.9354	0.0012	0.3502
0.980	0.8621	0.5522	0.6405	0.5251	1.3464	2.4381	0.9353	0.0005	0.3535
0.990	0.8597	0.5460	0.6351	0.5297	1.3467	2.4664	0.9351	0.0001	0.3567
1.000	0.8573	0.5398	0.6297	0.5343	1.3468	2.4949	0.9351	0.0000	0.3598

Page 18 of 38

GAS FLOW TABLES ($\gamma=1.333$): SUPERSONIC FLOW

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
1.010	0.8548	0.5337	0.6243	0.5389	1.3467	2.5234	0.9351	0.0001	0.3628
1.020	0.8524	0.5276	0.6189	0.5434	1.3464	2.5521	0.9352	0.0005	0.3658
1.030	0.8499	0.5215	0.6136	0.5479	1.3458	2.5809	0.9354	0.0011	0.3687
1.040	0.8474	0.5154	0.6082	0.5525	1.3450	2.6097	0.9356	0.0019	0.3715
1.050	0.8449	0.5093	0.6028	0.5569	1.3440	2.6387	0.9359	0.0029	0.3743
1.060	0.8424	0.5033	0.5975	0.5614	1.3428	2.6678	0.9363	0.0042	0.3769
1.070	0.8399	0.4974	0.5922	0.5659	1.3414	2.6970	0.9367	0.0056	0.3795
1.080	0.8374	0.4914	0.5869	0.5703	1.3397	2.7263	0.9371	0.0071	0.3820
1.090	0.8349	0.4855	0.5816	0.5747	1.3379	2.7557	0.9376	0.0089	0.3845
1.100	0.8323	0.4796	0.5763	0.5791	1.3359	2.7852	0.9381	0.0108	0.3868
1.110	0.8298	0.4738	0.5710	0.5835	1.3337	2.8148	0.9387	0.0128	0.3891
1.120	0.8272	0.4680	0.5658	0.5878	1.3313	2.8446	0.9394	0.0150	0.3913
1.130	0.8247	0.4622	0.5605	0.5922	1.3287	2.8744	0.9401	0.0173	0.3934
1.140	0.8221	0.4565	0.5553	0.5965	1.3259	2.9043	0.9408	0.0197	0.3954
1.150	0.8195	0.4508	0.5501	0.6008	1.3229	2.9344	0.9415	0.0223	0.3974
1.160	0.8170	0.4452	0.5449	0.6050	1.3198	2.9646	0.9424	0.0250	0.3993
1.170	0.8144	0.4396	0.5398	0.6093	1.3165	2.9949	0.9432	0.0277	0.4011
1.180	0.8118	0.4340	0.5347	0.6135	1.3131	3.0253	0.9441	0.0306	0.4028
1.190	0.8092	0.4285	0.5295	0.6177	1.3094	3.0558	0.9450	0.0335	0.4044
1.200	0.8066	0.4230	0.5245	0.6219	1.3057	3.0864	0.9459	0.0366	0.4060
1.210	0.8040	0.4176	0.5194	0.6261	1.3017	3.1172	0.9469	0.0397	0.4075
1.220	0.8014	0.4122	0.5143	0.6302	1.2976	3.1481	0.9479	0.0429	0.4089
1.230	0.7988	0.4068	0.5093	0.6344	1.2934	3.1791	0.9489	0.0462	0.4102
1.240	0.7962	0.4015	0.5043	0.6385	1.2890	3.2102	0.9500	0.0495	0.4115
1.250	0.7936	0.3963	0.4994	0.6426	1.2845	3.2414	0.9511	0.0529	0.4127
1.260	0.7909	0.3911	0.4944	0.6466	1.2798	3.2727	0.9522	0.0564	0.4138
1.270	0.7883	0.3859	0.4895	0.6507	1.2751	3.3042	0.9533	0.0599	0.4148
1.280	0.7857	0.3808	0.4846	0.6547	1.2701	3.3358	0.9545	0.0634	0.4158
1.290	0.7830	0.3757	0.4798	0.6587	1.2651	3.3675	0.9557	0.0670	0.4167
1.300	0.7804	0.3706	0.4749	0.6627	1.2599	3.3993	0.9569	0.0707	0.4175
1.310	0.7778	0.3657	0.4701	0.6667	1.2547	3.4313	0.9581	0.0744	0.4182
1.320	0.7751	0.3607	0.4654	0.6706	1.2493	3.4633	0.9594	0.0781	0.4189
1.330	0.7725	0.3558	0.4606	0.6746	1.2438	3.4955	0.9606	0.0819	0.4195
1.340	0.7698	0.3510	0.4559	0.6785	1.2382	3.5279	0.9619	0.0857	0.4200
1.350	0.7672	0.3462	0.4512	0.6824	1.2325	3.5603	0.9632	0.0895	0.4205
1.360	0.7646	0.3414	0.4465	0.6862	1.2266	3.5929	0.9645	0.0934	0.4209
1.370	0.7619	0.3367	0.4419	0.6901	1.2207	3.6256	0.9659	0.0973	0.4212
1.380	0.7593	0.3320	0.4373	0.6939	1.2147	3.6584	0.9672	0.1012	0.4215
1.390	0.7566	0.3274	0.4328	0.6977	1.2086	3.6914	0.9686	0.1051	0.4216
1.400	0.7540	0.3229	0.4282	0.7015	1.2025	3.7245	0.9700	0.1091	0.4218
1.410	0.7513	0.3183	0.4237	0.7053	1.1962	3.7577	0.9714	0.1130	0.4218
1.420	0.7487	0.3139	0.4192	0.7090	1.1899	3.7910	0.9728	0.1170	0.4218
1.430	0.7460	0.3094	0.4148	0.7127	1.1835	3.8245	0.9742	0.1210	0.4217
1.440	0.7434	0.3051	0.4104	0.7164	1.1770	3.8581	0.9756	0.1250	0.4216
1.450	0.7407	0.3007	0.4060	0.7201	1.1704	3.8918	0.9771	0.1290	0.4214
1.460	0.7381	0.2965	0.4017	0.7238	1.1638	3.9257	0.9785	0.1331	0.4212
1.470	0.7354	0.2922	0.3974	0.7275	1.1571	3.9597	0.9800	0.1371	0.4209
1.480	0.7328	0.2880	0.3931	0.7311	1.1504	3.9938	0.9815	0.1411	0.4205
1.490	0.7301	0.2839	0.3888	0.7347	1.1435	4.0281	0.9829	0.1452	0.4201
1.500	0.7275	0.2798	0.3846	0.7383	1.1367	4.0625	0.9844	0.1492	0.4196

M	$\frac{T}{T_{0}}$	$\frac{p}{p_{0}}$	$\frac{\rho}{\rho_{0}}$	$\frac{V}{\sqrt{c_{p} T_{0}}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p_{0}}$	$\frac{\dot{m} \sqrt{c_{p} T_{0}}}{A p}$	$\frac{F}{\dot{m} \sqrt{c_{p} T_{0}}}$	$\frac{4 c_{f} L_{\max }}{D}$	$\frac{\frac{1}{2} \rho V^{2}}{p_{0}}$
1.510	0.7248	0.2758	0.3804	0.7419	1.1298	4.0970	0.9859	0.1532	0.4191
1.520	0.7222	0.2718	0.3763	0.7454	1.1228	4.1317	0.9874	0.1573	0.4185
1.530	0.7195	0.2678	0.3722	0.7489	1.1158	4.1665	0.9889	0.1613	0.4178
1.540	0.7169	0.2639	0.3681	0.7524	1.1087	4.2014	0.9905	0.1654	0.4171
1.550	0.7143	0.2600	0.3641	0.7559	1.1016	4.2365	0.9920	0.1694	0.4164
1.560	0.7116	0.2562	0.3600	0.7594	1.0945	4.2717	0.9935	0.1734	0.4156
1.570	0.7090	0.2524	0.3561	0.7629	1.0873	4.3070	0.9950	0.1775	0.4147
1.580	0.7064	0.2487	0.3521	0.7663	1.0801	4.3425	0.9966	0.1815	0.4138
1.590	0.7038	0.2450	0.3482	0.7697	1.0729	4.3782	0.9981	0.1855	0.4129
1.600	0.7011	0.2414	0.3443	0.7731	1.0656	4.4139	0.9997	0.1895	0.4119
1.610	0.6985	0.2378	0.3405	0.7765	1.0583	4.4498	1.0012	0.1935	0.4109
1.620	0.6959	0.2343	0.3367	0.7799	1.0510	4.4859	1.0028	0.1975	0.4098
1.630	0.6933	0.2308	0.3329	0.7832	1.0436	4.5220	1.0043	0.2015	0.4087
1.640	0.6907	0.2273	0.3291	0.7865	1.0363	4.5584	1.0059	0.2055	0.4075
1.650	0.6881	0.2239	0.3254	0.7898	1.0289	4.5948	1.0075	0.2094	0.4063
1.660	0.6855	0.2206	0.3217	0.7931	1.0215	4.6314	1.0090	0.2134	0.4051
1.670	0.6829	0.2172	0.3181	0.7964	1.0141	4.6682	1.0106	0.2173	0.4038
1.680	0.6803	0.2139	0.3145	0.7996	1.0066	4.7051	1.0122	0.2213	0.4025
1.690	0.6777	0.2107	0.3109	0.8028	0.9992	4.7421	1.0137	0.2252	0.4011
1.700	0.6751	0.2075	0.3074	0.8061	0.9918	4.7793	1.0153	0.2291	0.3997
1.710	0.6726	0.2044	0.3039	0.8093	0.9843	4.8166	1.0169	0.2330	0.3983
1.720	0.6700	0.2012	0.3004	0.8124	0.9769	4.8541	1.0184	0.2369	0.3968
1.730	0.6674	0.1982	0.2969	0.8156	0.9694	4.8917	1.0200	0.2407	0.3953
1.740	0.6649	0.1951	0.2935	0.8187	0.9620	4.9294	1.0216	0.2446	0.3938
1.750	0.6623	0.1922	0.2901	0.8218	0.9545	4.9673	1.0232	0.2484	0.3922
1.760	0.6597	0.1892	0.2868	0.8249	0.9471	5.0054	1.0247	0.2522	0.3906
1.770	0.6572	0.1863	0.2835	0.8280	0.9396	5.0435	1.0263	0.2560	0.3890
1.780	0.6546	0.1834	0.2802	0.8311	0.9322	5.0819	1.0279	0.2598	0.3874
1.790	0.6521	0.1806	0.2770	0.8341	0.9248	5.1204	1.0294	0.2636	0.3857
1.800	0.6496	0.1778	0.2737	0.8372	0.9173	5.1590	1.0310	0.2673	0.3840
1.810	0.6471	0.1751	0.2706	0.8402	0.9099	5.1978	1.0326	0.2711	0.3822
1.820	0.6445	0.1723	0.2674	0.8432	0.9025	5.2367	1.0341	0.2748	0.3805
1.830	0.6420	0.1697	0.2643	0.8461	0.8951	5.2758	1.0357	0.2785	0.3787
1.840	0.6395	0.1670	0.2612	0.8491	0.8878	5.3150	1.0373	0.2822	0.3769
1.850	0.6370	0.1644	0.2581	0.8521	0.8804	5.3544	1.0388	0.2858	0.3751
1.860	0.6345	0.1619	0.2551	0.8550	0.8731	5.3939	1.0404	0.2895	0.3732
1.870	0.6320	0.1593	0.2521	0.8579	0.8658	5.4336	1.0419	0.2931	0.3714
1.880	0.6295	0.1568	0.2491	0.8608	0.8585	5.4734	1.0435	0.2967	0.3695
1.890	0.6271	0.1544	0.2462	0.8636	0.8512	5.5134	1.0450	0.3003	0.3676
1.900	0.6246	0.1520	0.2433	0.8665	0.8439	5.5535	1.0466	0.3039	0.3656
1.910	0.6221	0.1496	0.2404	0.8693	0.8367	5.5938	1.0481	0.3074	0.3637
1.920	0.6197	0.1472	0.2376	0.8722	0.8295	5.6342	1.0497	0.3110	0.3617
1.930	0.6172	0.1449	0.2348	0.8750	0.8223	5.6748	1.0512	0.3145	0.3598
1.940	0.6148	0.1426	0.2320	0.8778	0.8152	5.7155	1.0527	0.3180	0.3578
1.950	0.6123	0.1404	0.2292	0.8805	0.8081	5.7564	1.0543	0.3215	0.3558
1.960	0.6099	0.1382	0.2265	0.8833	0.8010	5.7974	1.0558	0.3249	0.3537
1.970	0.6075	0.1360	0.2238	0.8860	0.7939	5.8386	1.0573	0.3284	0.3517
1.980	0.6051	0.1338	0.2212	0.8888	0.7869	5.8800	1.0588	0.3318	0.3497
1.990	0.6026	0.1317	0.2185	0.8915	0.7799	5.9215	1.0603	0.3352	0.3476
2.000	0.6002	0.1296	0.2159	0.8942	0.7729	5.9631	1.0619	0.3386	0.3455

Page 20 of 38

		$\frac{p_{2}}{p_{1}}$	$\frac{\rho_{2}}{\rho_{1}}$	$\frac{T_{2}}{T_{1}}$	M_{2}	${ }_{\substack{p_{0} \\ p_{0}}}$	m_{1}	-					M_{2}	
	${ }_{7937}$	1.093	1.057	1223	Soss	9095	1.40			${ }_{\text {l }}^{1096}$	${ }^{18} 8.685$	${ }_{1223}$	${ }_{\text {a }}^{0.198}$	
1.515	${ }^{7237}$	(105	1157			0.9983				${ }^{20294}$	${ }^{1,18885}$	${ }^{12,2955}$	${ }^{0} 0.7485$	
$\substack { 2000 \\ \begin{subarray}{c}{2000 \\ 2000{ 2 0 0 0 \\ \begin{subarray} { c } { 2 0 0 0 \\ 2 0 0 0 } } \end{subarray}$								$\begin{gathered} 2000 \\ \substack{2000} \\ \hline .000 \end{gathered}$						
		$\underset{\substack{1,1985 \\ 1,294}}{\substack{1,95}}$										$\begin{aligned} & 8784 \\ & \hline 80 \end{aligned}$		
							1.50	${ }^{2}$				2as	(135	
							1.55							
								$\begin{gathered} \text { and } \\ \text { zen } \\ 2000 \end{gathered}$						

		0	10	1
0	0	7	0	
0	0	0	0	
0	0	10	10	
	0	0	0	
0	0	0		

トゥ

-
$\stackrel{N}{4}$

m	0	8
5	4	
	0	0
0	0	0
0	0	0
0	0	0

$\stackrel{?}{?}$

8866

 \％ 0 N个

$\mathrm{N}_{1} \mid$

$\stackrel{i}{i}$

$\stackrel{\stackrel{\circ}{8}}{\stackrel{\circ}{\square}}$

$e^{2} \mid=$

Q

응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ Nナ $\cup \circ$ N

8

 \title{ N

}

 \title{N
}}

Q|

$\mathfrak{\sim}$

$\stackrel{\sim}{2} \stackrel{\circ}{\circ}$
Nơo

$\because \underset{\sim}{\sim}$

内

 N゙

20

al

Q \quad 웅

Q \quad ©

$\stackrel{T}{i}$
 \geqslant
 Oblique Shock Tables

풍

?

∞
N
∞
∞
∞
∞
0

 \begin{tabular}{ll}
∞ \&

0

N

N

\multirow{2}{c}{}

0

50

σ

\hline

0

0

0

0

0

0

∞

$\stackrel{9}{2}$

\multirow{2}{c}{}

0

0

0
\end{tabular}

$\frac{0}{6}$
$\frac{1}{c}$

 $\pm \infty$
50
0
0
0
0

 N $\cup \mathscr{O}$

$\stackrel{(}{\mathrm{N}}$

8 $\stackrel{\circ}{\mathrm{i}}$

$\begin{aligned} & \text { 응 } \\ & \text { Nin } \end{aligned}$

Ni|

Q ${ }^{\text {N }}{ }^{\circ}$

かめ

8	\bar{O}
0	0

M_{2} Noter
$\stackrel{\sim}{\infty}$すめN

88888888888888888\％ Nホ 19
\mathbb{N}
$\stackrel{1}{N}$

Oblique Shock Tables（ $\gamma=1.4$ ）

－ \qquad都

888888888888888888888888888 Nホ \leftarrow 언

000000000000000000000000

ю

$\mathrm{N}^{\mathrm{N}} \mid \underset{\sim}{-}$

 O
O
N

$\stackrel{?}{i}$

$\begin{array}{l\|l} \text { a } \\ 2 & \overline{0} \end{array}$	 		 	
${ }^{N}$	 	 	웅 దかん 	
N｜N			寸 	
Q｜E		 	 	
2｜${ }^{2}$		অ 心 	 	
$\overbrace{}^{Q}$	\＆O 	 	 ㄷN N゙ N゙べ	
$\pm \infty$	88888888888 	88880.688888888888888888888 	 	
$\stackrel{\text { ¢ }}{\substack{0}}$	－		$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	
	M M M N N N 둥 প্লু o oiosooio	 0000000000000000000000000000000000		
$\underset{\sim}{N}$	 000000000		 －00000000000	
N－				
Q｜ 2		 		$\begin{aligned} & \text { No } \\ & \stackrel{N}{N} \\ & \underset{\sim}{N} \end{aligned}$
Q ${ }^{\text {a }}$	 $\infty \infty \infty \infty \infty \infty \infty \infty$	 		
0		パ 		$\begin{aligned} & \infty \\ & \stackrel{\infty}{N} \stackrel{0}{\circ} \\ & \stackrel{N}{N} \text { Nָ } \end{aligned}$
0		 		$\begin{aligned} & 88 \\ & \hline 8.8 \\ & \text { N } \end{aligned}$
－	$\stackrel{\mathrm{O}}{\mathrm{N}}$	$\begin{aligned} & \boldsymbol{\sim} \\ & \underset{\sim}{\infty} \end{aligned}$		$\begin{aligned} & \mathrm{O} \\ & \stackrel{1}{\mathrm{~N}} \end{aligned}$

 | 808 |
| :--- |
| 80 |
| 80 |
| 0 |
| 0 |
| 0 |
| 0 |

 N
耳
N
in
N゙N に $\begin{array}{r}0 \\ 0.8 \\ \hline 0 \\ \hline\end{array}$

 \begin{tabular}{l}
BT

$\underset{\sim}{7}$

\hline \multirow{2}{*}{}

NO

N

Ni

\hline
\end{tabular}

$\underset{7}{7}$

0 | 88 |
| :--- |
| 8 |
| N |웅

8	
2	\square
2	

 N N N N N N N N N N
ぎ
ぎ
N｜F

N

以

 O ${ }_{0}^{N} \stackrel{0}{\infty}$

$\stackrel{\square}{2}=$
Σ

ल্পু

Q ${ }^{-}$ $\stackrel{N}{N}$
$\underset{N}{N}$
2

88888888888888888880
$\stackrel{\stackrel{m}{m}}{\substack{0}}$

0

इ $\quad \stackrel{ल}{\mathrm{~m}}$
\qquad
\qquad

N	
S	N¢ \sim ¢ ¢
	0000000000000000

ミ $\stackrel{\stackrel{\circ}{\mathrm{j}}}{ }$
$\stackrel{10}{\text { en }}$

Q

人品

 $\stackrel{\stackrel{7}{9}}{\dot{j}}$

∞

$\stackrel{\circ}{\circ}$

NF N${ }^{N}$

2

O	\bar{O}
0	0

$\stackrel{N}{N}$
ウゥ ゥ ゥ
N｜E
Q ${ }^{N}$

Q $\quad \stackrel{\circ}{\div}$

$\stackrel{\infty}{\infty}$

Page 36 of 38

$\stackrel{n}{n}$

「

10
0
0
0
gi ㄹ

$Q^{N} \mid$
 (

O
ल
E
10
∞
∞

0000000000000
M_{2}
Q|
2

0 88888888888888888888888888
N
E
Page 38 of 38
ミ゙
NTH
2

응 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

