JAS THERMODYNAMICS \& POWER GENERATKN 2021 SOLUTIONS
(Examiners' comments on last page)

AJW RSV 18 May 2021

Q1
(a)

(i) Cycle is reversite $\therefore d q=T d s$ \& $d w=p d v$

Fist Law: $\quad \delta d q-\oint d w=0$

$$
\therefore \quad \oint^{7} \text { dds }=\oint p \text { pow } \quad \Rightarrow \text { Area ABCD }=\text { Area abed }
$$

For small $d T \& d p: A B C D=s_{f g} d T ; a b c d=v_{f g} d p$
Also, for evaporation at constant p :

$$
T d s=d h-v_{\text {ch k }} \Rightarrow T_{s_{f s}}=h_{t g}
$$

Equating areas: $\quad \frac{h_{f g}}{T} d T=v_{f g} d p$ on saturation live

$$
\therefore \underline{\left(\frac{d T}{d p}\right)_{s i}}=\frac{T v_{v_{t g}}}{h_{f s}}[6]
$$

(ii) Assume: $v_{f} \ll v_{g}$; ied gas; $h_{f j}=L \sim$ cont

$$
\therefore\left(\frac{d T}{d p}\right)_{m T}=\frac{T(R T / P)}{L}
$$

intecare: : $\frac{1}{T_{s 1}}-\frac{1}{T_{s t}}=\frac{\bar{R}}{M L} \ln \left(\frac{p_{s}}{p_{1}}\right)$

$$
\begin{array}{ll}
\therefore \quad \frac{1}{T_{S 2}}=\frac{1}{230.7}-\frac{8.314}{44 \times 425.9} \times \ln 2 \\
\Rightarrow \quad T_{S 2}=248.3 \mathrm{~K}=248 \mathrm{k} t \text { SF } & \\
& =\quad \text { NOTE "REFPROP" gives }
\end{array}
$$

(6) (i) At saturation, $\bar{\mu}_{i}^{v}\left(T, p_{s i}\right)=\bar{\mu}_{i}^{l}\left(T, p_{s i}\right)$

Also assume $\bar{v}_{f} \ll \bar{v}_{g}(=\bar{R} T \mid p)$

$$
\begin{align*}
& \therefore \quad \bar{\mu}_{i}^{v}\left(T, p_{s i}\right)+\int_{p_{s i}}^{p} \frac{\bar{R} T}{p} d p+\bar{R} T \ln x_{i}^{v}=\bar{\mu}_{\text {equal }}^{l} /\left(v_{1}, p_{i}\right)+\int_{p_{s}}^{p} v_{j}^{s m a l l} / p_{p}+\bar{R} T \ln x_{i}^{l} \\
& \Rightarrow \quad \bar{R} T \ln \left(\frac{p}{p_{s i}}\right)+\bar{R} T \ln x_{i}^{v}=\bar{R} T \ln x_{i}^{l} \\
& \Rightarrow \quad \underline{p x_{i}^{v}=p_{s i} x_{i}^{l}} \tag{4}
\end{align*}
$$

(ii) Let x be mole faction of butane in liquid phase and y be mole fraction of butane in vapor phase Summing (1) over both components, at the bubble point:

$$
\begin{aligned}
P=P_{\text {ROB. }} & =(1-x) P_{S P}+x{P_{S B}} \\
& =0.5 \times 1.0+0.5 \times 0.147=0.5735 \mathrm{~W}
\end{aligned}
$$

Applying eq.(1) for butane at the bubble taint:

$$
\begin{aligned}
y p_{\text {Bus. }} & =x p_{\text {si }} \\
\therefore y & =0.5 \times 0.147 / 0.5735=0.12816
\end{aligned}
$$

\Rightarrow Bubbles are ~ 13% butane, 87% propane nobler boris
Note the higher fraction of more volatile component, as expected

Q2.
(a)

$$
\begin{aligned}
& C O+1 / 2\left(O_{2}+\frac{79}{21} N_{2}^{*}\right) \rightarrow C O_{2}+\frac{71}{42} N_{2}^{*} \\
& \text { AFR }=\frac{112\left(32+\frac{79}{21} \times 28\right)}{28}=2.452
\end{aligned}
$$

(b)(i)

$$
\begin{aligned}
C O+1 / 2\left(O_{2}+\frac{75}{21} N_{2}^{*}\right) \rightarrow x C O & +(1-x) C O_{2}+\frac{x}{2} O_{2} \\
& +\frac{79}{42} N_{2}^{*}
\end{aligned}
$$

$$
\begin{array}{ll}
n_{0}=1+1 / 2+\frac{79}{42} & n^{\text {jext }}=x+1-x+\frac{x}{2}+\frac{79}{42} \\
n_{0}=\frac{71}{2} & n=\frac{121}{42}+\frac{x}{2}
\end{array}
$$

Equilibriun condition:

$$
\begin{aligned}
& \frac{\left(P_{c o r} / p_{0}\right)}{\left(P_{c o} / P_{0}\right)\left(P_{0_{2}} / p_{p}\right)^{1 / 2}}=\frac{\left(\frac{1-x}{y}\right)\left(p / p_{0}\right)}{\frac{x}{y}\left(p_{0}\right)\left[\left(\frac{x}{2 n}\right) p_{0} p_{0}\right]^{1 / 2}}=k_{p}(T) \\
& \therefore \frac{1-x}{x^{3 / 2}}=\left(\frac{p}{2 P_{o n}}\right)^{1 / 2} k_{p}(T)
\end{aligned}
$$

lded ges: $\quad p_{0} V=n_{0} \bar{R} T_{0} ; \quad p V=n \bar{R} T$

$$
\begin{array}{r}
\therefore \frac{p}{n P_{0}}=\frac{1}{n_{0}}\left(\frac{T}{T_{0}}\right) \Rightarrow \frac{1-x}{x^{3 / 2}}=\left(\frac{1}{2 n_{0}}\right)^{1 / 2}\left(\frac{T}{T_{0}}\right)^{1 / 2} k p(T) \\
\Rightarrow \alpha=3 / 2 ; \gamma=1 / 2 ; \beta=\left(\frac{1}{2 n_{0}}\right)^{1 / 2}=0.38456 \text { [ET] } \\
\text { [8] }
\end{array}
$$

(ii) Shen $T=2600 \mathrm{~K}, \quad \frac{1-x}{x^{3 / 2}}=0.38456 \times\left(\frac{2600}{299.15}\right)^{1 / 2} \times e^{2.800}$

$$
\therefore x^{3 / 2}=\frac{1-x}{18.675}=x=\left(\frac{1-x}{18.675}\right)^{2 / 3}
$$

We expect $x \quad t \in$ suall, so guass $x=0$ on RHS

$$
\begin{align*}
& \Rightarrow \quad x_{1}=0.142 ; x_{2}=0.128 ; x_{3}=0.1296 ; \underline{x=0.295} \\
& \left(\frac{p}{n_{0}}\right)=\frac{n}{n_{0}} \frac{T}{T_{0}}=\frac{2.9457}{3.38095} \times \frac{2600 .}{298.15}=7.60 \Rightarrow p=7.6 \mathrm{bor} \tag{array}
\end{align*}
$$

(iii) Eren at elevated temperatures, k_{p} beawes rey lage as T is reduced (e.g., $k_{p}=e^{32}$ at 800 k), so at $T=T_{0}$ there aill $\&$ (almost) no co $[x \approx 0]$
Fiest LAN:- $Q-Y=\Delta \mu=\left(H_{2}-P_{2} V\right)-\left(H_{1}-P_{1} V\right)$

$$
\begin{aligned}
& \therefore Q=\left(H_{2}-H_{1}\right)-\left(n_{2}-n_{0}\right) \bar{R} T_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =-283.0+0.5 \times 8.3145 \times 298.15 / 1000 \\
& =-281.76 \mathrm{MJ}
\end{aligned}
$$

i.e, $|Q|=282 \mathrm{MJ}$ к 33 F

Q3 (a) (i) $r_{T}=\beta^{\gamma-1 / \gamma}=16^{2 / 7} \quad$ (isentropic T ratio)

$$
\begin{align*}
T_{2}=T_{1}+\frac{T_{1}\left(r_{T}-1\right)}{n_{c}} & =290\left(1+\frac{\left(16^{2} /-1\right)}{0.8}\right) \\
& =728 \mathrm{k} \tag{2}
\end{align*}
$$

(ii)

$$
\begin{align*}
\frac{T_{2}}{T_{1}}=\left(1+\frac{\left(\sqrt{r_{T}}-1\right)}{n_{c}}\right)^{2} & \left.\Rightarrow T_{2}=290 \times\left(1+\frac{\left(4^{2 / 7}-1\right.}{0.8}\right)\right)^{2} \\
& =749.4 \mathrm{k} \tag{3}
\end{align*}
$$

(iii) Polytropic efficiency gives oxit temperation that is indeperdent of mumber of "stages" - easential for cychs with (e.g.) intercoling.

$$
\begin{align*}
\left(\frac{T_{2}}{T_{1}}\right)=\left(\frac{p_{2}}{p_{1}}\right)^{\frac{r_{1}}{\gamma h_{p}} \Rightarrow n_{p}} & =\frac{\gamma-1}{\gamma} \frac{\ln \left(k_{2}\left(r_{1}\right)\right.}{\ln \left(T_{2}\left(T_{1}\right)\right.} \\
& =\frac{2}{7} \frac{\ln 16}{\ln (723 / 290)}=0.861 \tag{3}
\end{align*}
$$

(b)

$$
\begin{aligned}
& T_{2}=T_{1}\left(\frac{p_{2}}{p_{1}}\right)^{\frac{\gamma-1}{\gamma \eta_{2}}}=280 \times 20^{(2 / 7 \times 0.89)}=732.5 \\
& T_{4}=T_{3}\left(\frac{p_{2}}{p_{3}}\right)^{\eta_{2}(\gamma-1) / \gamma}=1450 \times\left(\frac{1.1}{19}\right)^{\frac{0.86 \times 0.36}{1.36}}=758 \mathrm{~K} .
\end{aligned}
$$

SFEEE for conbustion:
(i)

$$
\begin{align*}
\text { i) } & A_{p}-H_{p o}=H_{R}-H_{R 0}+H_{20}-H_{p o} \\
\therefore & (1+f) C_{P x}\left(T_{3}-T_{0}\right)=C_{R a}\left(T_{2}-T_{0}\right)+f . L C V \\
\Rightarrow & f=\frac{C_{\times \times}\left(T_{3}-T_{0}\right)-C_{p a}\left(T_{2}-T_{0}\right)}{L C V-C_{p x}\left(T_{3}-T_{0}\right)} \\
& f=\frac{1.1 \times(1450-298)-1.005(732.5-298)}{49000-1.1 \times(1450-298)}=0.01740 \tag{6}
\end{align*}
$$

(ii)

$$
\begin{aligned}
\omega & =(1+f) C_{p x}\left(T_{3}-T_{4}\right)-G_{a}\left(T_{2}-T_{1}\right) \\
& =1.0174 \times 1.1 \times(1450-758)-1.005 \times(732.5-280) \\
& =319.6 \mathrm{~kJ} / \mathrm{kg} \text { conp. air }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\eta=\frac{c o}{f \times L C V} & =\frac{319.6}{0.0174 \times 49000} \\
\eta & =37.5 \%
\end{aligned}
$$

Q4. (a)

$$
\begin{aligned}
& h_{1}=h_{f}(004)=122.4 \mathrm{~kJ} / \mathrm{mg} \\
& s_{1}=0.422 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} \\
& h_{3}=3450.4 \mathrm{~kJ} / \mathrm{hg} \\
& s_{3}=6.523 \mathrm{kS} / \mathrm{hg} \mathrm{k} . \\
& s_{y}=8.473 \\
& h_{g}=2553.7
\end{aligned}
$$

(ii) Using chart: $h_{45}=1964.4$
$\Rightarrow w_{i s}=h_{3}-h_{4 s}=1486 \mathrm{ks} / \mathrm{kg}$ (isentgie spec. work)
For estimate it is ok t neglect f.p. work.

$$
\begin{aligned}
\eta_{c r .}=\frac{n_{i s} \omega_{i s}}{q_{\text {is }}} \Rightarrow n_{\text {is }} & =\frac{n_{\text {er }} \times q_{i n}}{\omega_{i s}}=\frac{n_{m}\left(h_{3}-h_{1}\right)}{\omega_{i}} \\
& =0.36 \times(3450.4-121.4) / 1486 . \\
& =0.807
\end{aligned}
$$

(iii)

$$
\begin{align*}
h_{4}=h_{3}-\eta_{i s} \omega_{i s} & =3450.4-0.807 \times 1486 \\
& =2252 \mathrm{~kJ} / \mathrm{mg} \\
x_{4}=\frac{h_{4}-h_{1}}{h_{9}-h_{1}} & =\frac{2252-121.4}{2553.7-121.4}=0.876 \tag{1}
\end{align*}
$$

(6) SFEE for combustion:

$$
\begin{aligned}
& \eta_{B}=\frac{Q}{L C V} ; \quad Q=H_{R}-H_{P}=\left(H_{R} / H_{R 0}\right)-\left(H_{p}-H_{p}\right)+\left(H_{R_{B}}-H_{R}\right) \\
& \therefore \eta_{B}=1-\frac{(A+1) C_{x}\left(T_{B}-T_{0}\right)}{L C V}=1-\frac{21 \times 1.1 \times 105}{23000} \simeq 0.894_{5}^{5} \\
& \therefore \eta_{0 v}=n_{B} \times \eta_{\text {er }} \\
&=0.8945 \times 0.36 \simeq 32.2 \%
\end{aligned}
$$

(b) cont.

$$
\begin{aligned}
P= & \dot{m}_{c} L C V_{x} \eta_{a} \\
\therefore \dot{m}_{c}=\frac{P}{\angle C V_{x} \eta_{a V}}=\frac{500}{23 \times 0.322} & =67.5 \mathrm{~kg} \mathrm{~g}^{-1} \\
& =5833 \text { tonne } / \text { day }
\end{aligned}
$$

$$
\dot{m}_{c o z}=\dot{m}_{c} \times 0.75 \times \frac{44}{12}=16041 \text { tonne day }
$$

(c) Assume feelowter is saturated \& ignore fp. work

$$
\begin{aligned}
& T_{f \omega}=T_{\text {set }}(c 0 \mathrm{bor})=180^{\circ} \mathrm{C} \\
& \text { SFEF for FH } \\
& h_{b}=h\left(1060 r, 250^{\circ} \mathrm{C}\right) \\
& =2943.1
\end{aligned}
$$

$$
\begin{align*}
h_{f_{w}}=x h_{6}+(1-x) h_{1} \Rightarrow x & =\frac{h_{60}-h_{1}}{h_{6}-h_{1}}=\frac{762.5-121.4}{294.1-20.4} \\
& =0.227 \text { (bleed faction) } \tag{2}
\end{align*}
$$

$$
\begin{align*}
\eta_{o y}=\frac{\omega^{\prime}}{q^{\prime}} & =\frac{\left(h_{3}-h_{4}\right)-x\left(h_{6}-h_{4}\right)}{h_{3}-h_{4}+0} \\
& =\frac{(3450.2-2252 .)-0.277 \times(2943.1-2252 .)}{3450.2-762.5}=38.7 \% \tag{2}
\end{align*}
$$

(d) Higher FW temperature means stack temperature will increase thereby reducing the boiler efficiency. We need an air preteater (ABH1) to recovery heat from the fine gas.
oder code imporernatits: - single /dabble reheat (inc. men' of hat

- inc. both preserve (" [empreintuois?])

Examiners' comments

Q1. Most candidates correctly derived the C-C equation by equating the Gibbs' free energy between wet and dry saturated, but $p-v$ diagrams were often drawn incorrectly. Many were able to simplify the thermodynamic equilibrium criteria in part (b) to obtain Raoult's Law, but few managed to apply it successfully to obtain the bubble-point pressure and vapour.

Q2. Most did OK on part (a) but few got it completely right. Many candidates got into trouble in part (b) and did not see how to combine the equilibrium criterion with ideal gas relations at constant V , despite the similarity to an examples paper question.

Q3. This question on gas turbine cycles was tackled by all candidates. Most were familiar with polytropic efficiency but many found it harder to work through the combustion analysis and complete the cycle calculation.

Q4. Most were able to complete the turbine calculation, but there were surprisingly few correct answers for carbon dioxide emissions, although there seemed to be a slightly better understanding of the feed heater. Many candidates appeared to run out of time.

Dr A.J. White and Prof. R.S. Cant
May 2021

