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EGT2
ENGINEERING TRIPOS PART IIA

Tuesday 9 May 2023 2 to 3.40

Module 3A6

HEAT AND MASS TRANSFER

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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1 A fluid with thermal diffusivity α flows through a two-dimensional channel of
height 2δ , as shown in Fig. 1. The x-direction velocity is fully developed and has the
profile

u = uc

{
1−
( y

δ

)2
}

where y is the distance from the centreline and uc is the velocity at y = 0. The heat
fluxes at the top and bottom of the channel (q+ and q−, as shown) are uniform along x.
It may be assumed that the streamwise temperature gradient ∂T/∂x is constant and that
streamwise conduction is negligible. The fluid density ρ , specific heat capacity c and
thermal conductivity λ are all constant.

(a) Starting from the steady flow relation u ·∇(ρcT ) = ∇ · (λ∇T ), show that the
governing equation for temperature is

uc

{
1−
( y

δ

)2
}

∂T
∂x

= α
∂ 2T
∂y2 . [20%]

(b) Obtain an expression for the variation of the transverse temperature gradient ∂T/∂y
in terms of the heat fluxes, q− and q+, and other quantities defined above. [20%]

(c) Sketch the temperature and velocity profiles and find an expression for the
difference between the top and bottom temperatures, ∆T = T (δ )−T (−δ ). Explain your
result. [30%]

(d) The bulk temperature is defined by

T̄ =
1

2δ ū

+δ∫
−δ

uT dy

where ū is the average velocity across the channel. Show that T̄ increases at a constant
rate in the streamwise direction. Explain why this is the case. [30%]
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2 Figure 2 shows a tubular condenser. It operates at a steady state, with its internal
surface at constant temperature Ts throughout the tube. The tube wall has constant thermal
conductivity λ and its inner and outer radii are r1 and r2 respectively. Heat transfer is
enhanced by fins of thickness t and outer radius r3, made from the same material as the
tube. Heat is convected from the outer surfaces to the surroundings at temperature T∞,
with heat transfer coefficient h. Axial conduction may be neglected.

(a) Consider first the section of tube without fins.

(i) Show that, within the tube wall, the radial variation of temperature may be
expressed as θ(r) = a lnr+b, where θ(r) = (T (r)−T∞)/∆T and ∆T = Ts−T∞. [15%]

(ii) Noting the convective boundary at r2, determine the constants a and b in terms
of the above-defined quantities. Hence, or otherwise, determine an expression for
the rate of heat transfer to the environment. [20%]

(b) Consider now heat transfer within and from the fins.

(i) Starting from first principles, and stating your assumptions, show that the
governing equation for the radial temperature variation along a fin may be written
in the form

1
r

d
dr

(
r

dθ

dr

)
=

θ

δ 2 (1)

and determine δ in terms of the given parameters. [25%]

(ii) The exact solution to equation (1) involves Bessel functions, but for large r/δ

it may be approximated by θ(r) ≈ cer/δ + de−r/δ . Assuming this approximation
is valid and that T (r3)≈ T∞, determine the constants c and d in terms of the defined
parameters and θ(r2). [10%]

(iii) For a particular design, r3/δ = 10 and r2/δ = 5. Estimate the fin efficiency,
given by

ηfin =
total heat transfer from the fin

heat transfer from the same fin at uniform temperature T (r2)
. [30%]
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3 It may be assumed throughout this question that heat transfer is by radiation only.

(a) A furnace comprises a circular tube of radius r1 and a co-axial heater of radius r2.
In order to reduce heat losses to the environment the heater is surrounded by a series of N
thin cylindrical radiation shields at radii r3, r4 ... rN+2. The heater and both sides of each
shield have emissivity ε . The furnace may be assumed of infinite length.

(i) Draw an equivalent resistor network to represent radiative heat transfer
between the heater and the environment. Derive expressions for the resistance of
the i-th shield and for the overall resistance between the heater and the environment.

[25%]

(ii) Determine the overall resistance in terms of ε and r2 for the case where
ri = 2ri−1 (i = 3,4, ...N +2) and N→ ∞. [10%]

(b) In an alternative design the radiation shields are replaced by a layer of perfect
insulation, but in this case the furnace is of finite length, L = 5/π m, as shown in Fig. 3.
Heat is lost to the environment by radiation from the endplates, denoted body 3 and shaded
grey in Fig. 3.

(i) Draw an equivalent circuit and identify the appropriate resistances. [20%]

(ii) The furnace tube and heater are of radii r1 = 0.5m and r2 = 1m respectively
and the corresponding emissivities are ε1 = 0.5 and ε2 = 1. The emissivity of the
endplates is ε3 = 0.2 on either side. Calculate the rate of heat supply required to
maintain the heater at 1000 K if the environment temperature is 300 K. Take the
view factors as F12 = 0.8, F11 = 0.9 and F23 = 0.15, where this last view factor is
between the heater and a single endplate. [25%]

(iii) Losses from the endplates are to be reduced by applying a reflective film that
has zero emissivity in the wavelength range λmid± 0.5µm. Outside this range it
has no effect on the emissivity. Without further solution of the heat flow equations,
estimate the best choice of λmid. Assume Wien’s law, λ∗=C/T , for the wavelength
λ∗ at which the black-body radiation curve peaks, where C = 2898µmK and T is
the body temperature. [20%]
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4 A heat exchanger is to be designed to operate with fixed inlet temperatures of Th, i
and Tc, i for the hot and cold streams respectively. The corresponding heat capacities
of the two streams are Ch = ṁhch and Cc = ṁccc, where ṁ is the mass flow rate and
c is the isobaric specific heat capacity; subscripts h and c denote hot and cold streams
respectively. The total heat-exchange area between the streams is A and the overall heat-
transfer coefficient U may be assumed constant.

(a) Consider first a co-flow heat exchanger.

(i) Starting from a differential energy balance, show that the temperature
differences at outlet (subscript o) and inlet (subscript i) are related by

∆To = ∆Ti exp(−UA/C‖)

where ∆T = Th−Tc and C−1
‖ =C−1

h +C−1
c . [20%]

(ii) Show that the total rate of heat transfer Q̇‖may be written in the dimensionless
form

Q̇‖
UA∆Ti

=
C‖
UA

{
1− exp

(
−UA
C‖

)}
. [15%]

(b) Now consider a counter-flow heat exchanger.

(i) Show that the temperature differences at the hot and cold ends, ∆T2 and ∆T1
respectively, are related by

∆T2 = ∆T1 exp(−UA/C×)

and determine C× in terms of Ch and Cc. [15%]

(ii) Sketch a T-Q (temperature vs. heat transfer) diagram and mark on it ∆T1, ∆T2,
∆Ti, and the quantities Q̇×/Ch and Q̇×/Cc, where Q̇× is the total heat transfer rate.
Hence show that

Q̇×
UA∆Ti

=
C×
UA

{
1− exp(−UA/C×)

(C×/Cc)− (C×/Ch)exp(−UA/C×)

}
. [30%]

(c) Determine the ratio Q̇‖/Q̇× for the limiting case where Ch � Cc. Provide an
interpretation of your result with reference to a T-Q diagram. [20%]

END OF PAPER
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Answers

1

(a) -

(b) ∂T
∂y = uc

α
∂T
∂x y

(
1−
(

y
δ

)2
)
− q++q−

2λ

(c) ∆T = (q+ + q−)δ

λ
. The temperature rise is constant in x, so the temperature

difference across the channel must remain constant.

(d) Integration of the original governing equation yields:

ρ ūcp
∂T
∂x

=−(q+−q−)

2

(a)

(i) -

(ii) a =
(

λ

hr2
+ lnr2r1

)−1
, b = 1− lnr1

λ
hr2

+lnr2r1

(b) -

(c)

(i) -

(ii) c =
(

er1/δ − e−r1/δ e2r3/δ
)−1

, d =−c e2r3/δ

(iii) η = λ

hδ

er2/δ+e2r3/δ e−r2/δ

e2r3/δ e−r2/δ−er2/δ

(d) η ≈ 0.26
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3

(a)

(i) -

(ii) Req = 1
2πr2

(3−ε)
ε

(b)

(i) -

(ii) 4.8 kW

(iii) λmid ≈ 3.4µm

4

(a)

(i) -

(ii) -

(b)

(i) C× =
(

1
Ch
− 1

Cc

)−1

(ii) -

(c)
Q̇||
Q̇×
≈ 1. In this case, the heat transfer is determined by the available heat capacity

Ch.
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