
Module 3A6 - HEAT AND MASS TRANSFER - 2024
Solutions

1. Radiation with clouds

(a) Diagram for cloud radiation

Gs Gρ = ρcGs E

Ju: upward radiosity

Gτ = τcGs E = εcσT
4
c

Jd: downward radiosity

αc

(b) Diagram for cloud-earth interaction

Gs Gρ = ρcGs

E

E = αcEb,c = εcEb,c

Gτ = τcGs

ρeGτ

ρeEεeEb,e

Incoming : τcGs + εcEb,c

Outgoing : ρe(τcGs + εcEb,c) + εeEb,e = (1− εe)(τcGs + εcEb,c) + εeEb,e

Net : τcεeGs + (1− εe)εcEb,c − εeEb,e

(c) Net radiative flux to earth with cloud at Tc:

qin = τcGs + εcEb,c = (0.95)(1000)W/m
2
+ (0.95)(5.67× 10−8(W/m

2
K−4)(240 K)4

= 950 + 179 = 1128 W/m
2

qout = ρe(τcGs + εcEb,c) + εeEb,e = (1− 0.95)(1128W/m
2
) + (0.95)(5.67× 10−8(W/m

2
K−4)

= 56 + 355 = 411 W/m
2

qnet = 717 W/m
2

Without clouds:

q = Gs − εeEe = (1000− (0.95)(5.67× 10−8(285 K)4)︸ ︷︷ ︸
355

W/m
2
= 645 W/m

2

(d) Equivalent circuit: earth can radiate either directly to space via the regions without cloud, or
via the cloud as a barrier, where the resistance Rc appears both on the inner and outer sides:
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Ee, earth
Re Je

Res

Rec Jc
Rc Ec

Rc Jc

Rcs

Js = Es = 0, space

Ee, earth
Re

Je

RL1

Js = Es = 0, space

RL2 = Res

Assume that the view factor of outer cloud to space and cloud to earth is Fcs = Fce = 1. The
view factor from earth to the area with no clouds Fes is therefore:

AcFce = AeFec

Fec =
Ac

Ae
Fce =

1

2

Fec + Fes = 1

Fes =
1

2

Res =
1

AeFes
=

2

Ae

Rcs =
1

AcFcs
=

1

Ac
=

2

Ae

Rec =
1

AeFec
=

1
1
2Ae

=
2

Ae

Re =
1− εe
εeAe

Rc =
1− εc
εcAc

=
1− εc
εc

2

Ae

We now calculate the total resistances between earth and cloud, and cloud and space.

RL1 = Rec + 2Rc +Res =
2

Ae
+ 2

1− εc
εc

2

Ae
= 4.21

1

Ae

RL2 = Rcs =
2

Ae

R|| =
RL1

RL2
RL1 +RL2 =

4.21

2
4.21 + 2

1

Ae
= 1.35

1

Ae
Rtot = Re +R|| = 1.40

1

Ae

We can now calculate the overall heat transfer between Ec and Es :

q =
Q

Ae
=

Ee − Es

Rcs1
= 5.67× 10−8 (285

4 − 0)

1.40
= 265 W/m

2
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2. Wire

(a) A uniform radial temperature results if λw

D ≪ h . We have:

Nu =
hD

λa
= (0.35 + 0.67Re0.52)Pr0.3

λw

λa
=

100

0.03
= 3× 104

Reynolds number should be small for sufficiently small wire, so for

Re ≈ 0

Bi =
hD

λw
= (0.35)Pr0.3

λa

λw
≈ 10−4

Therefore, the heat transfer is limited by the heat transfer to air and the radial temperature
should be uniform.

(b) The balance for steady 1D heat conduction flux qx per unit cross section A = πD2/4 of wire
along the wire, with convection qc per unit external area of wire P dx = πD dx, is:

(qx − qx+dx)A− qcP dx+ ġ Adx = 0

−λwA
dT

dx
−
(
−λwA

dT

dx
− λwA

d2T

dx2
dx

)
− h(T − To)P dx = −ġ A dx

d2

dx2
(T − To)−

hP

λwA
(T − To) = − ġ

λw

d2θ

dx2
−m2θ = B

where m2 = hP
λwA = 4h

λwD , and B = − ġ
λw

.

(c) The general solution can be shown to satisfy the homogeneous solution for the equation, as:

d2θ

dx2
= m2(C1e

mx + C2e−mx) = m2θ

The particular solution θ = C3 satisfies the non-homogeneous equation:

(
d2θh
dx2

−m2θh)−m2C3 = B

C3 = − B

m2

Applying boundary conditions:

θ(+L) = C1 exp(mL) + C2 exp(−mL)− B

m2
= 0

θ(−L) = C1 exp(−mL) + C2 exp(mL)− B

m2
= 0

which can be solved as:

C1 = C2 =
B

m2

exp(mL)− exp(−mL)

exp(2mL)− exp(−2mL)
=

B

m2

1

exp(mL) + exp(−mL)

so that:

θ =
B

m2

(
exp(mx) + exp(−mx)

exp(mL) + exp(−mL)
− 1

)
=

ġD

4h

(
1− exp(mx) + exp(−mx)

exp(mL) + exp(−mL)

)
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The solution for θ is linear in ġ, so we just sketch the ratio y = θ/ ġD
4h as a function of x/L and

mL:

x/L

y = θ/ ġD
4h mL

Acceptable answers could use arguments of symmetry and the operating boundary conditions
for the sketch.

(d) The general equation contains the three terms (net conduction, net convection, heat gener-
ation) adding up to zero. Integrating over the domain once after multiplying by (λw), we
have:

λw
d2

dx2
(T − To)−

hP

A
(T − To) = −ġ

λw
dθ

dx
(T − To)|+L

−L︸ ︷︷ ︸
net transfer at walls

−
∫ +L

−L

hP

A
(T − To) dx︸ ︷︷ ︸

net convection

+

∫ +L

−L

ġ dx︸ ︷︷ ︸
generation

= 0

which can be integrated using the respective equations. However, by construction, this is not
necessary, so long as the final equations are shown to satisfy the governing equations and
respective boundary conditions. Solutions using θ as a solution and substituting to obtain the
three terms are also acceptable, even though they take more effort.
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3. (a) From the given values of Fm as a function of Um, we have:

Fm,1 =
1

2
CD,1ρU

2
1A

Fm,2 =
1

2
CD,2ρU

2
2A

Fm,1

Fm,2
=

CD,1

CD2

U2
1

U2
2

=
Un
1

Un
2

U2
1

U2
2

=
U2+n
1

U2+n
2

8 = 42+n

23 = 22(2+n)

n = −0.5

(b) From the Stanton number:

St =
h∆T

ρUcp∆T
=

hL

λ

λ

ρcp

1

UL
= NuL

α

ν

ν

UL
=

NuL
PrReL

NuL = StPrReL =
CD

2
PrReL ∝ Re0.5L

(c) Considering the total force and ratio of forces, and using rU = U/Um as the ratio of velocities,

F =
1

2
CDρU2WH

F

Fm
=

CD

CD,m
r2Ur

2
L = ((rU )(rL))

n
r2Ur

2
L = (rUrL)

n+2 = (rUrL)
1.5

Therefore,

F = (7.7 kN)(
10

8
8)1.5 = 243 N

For the heat transfer, we have:

Q = hA∆T

St =
h

ρcpU
=

CD

2
=

F

ρU2A

h =
F

ρU2A
ρcpU =

F

UA
cp

Q = hA∆T =
F

U
cp∆T

We can use the result above for F scaling with rL and rU as:

Q =
F

U
cp∆T =

F

Fm

Fm

Um

Um

U
cp∆T

= (rUrL)
n+2Fm

Um
r−1
U cp∆T

From the databook, cp = 1.005 kg/kJ K.

Q = rn+1
U rn+2

L

Fm

Um
cp∆T =

(
10

8

)0.5

81.5
7.7 N

8 m s−1
(1005 J kg−1 K−1)(15 K) = 364 kW

NB: For some unknown reason, reason the value of the model length scale was not given in
the original question statement, so all entries that include rL were considered acceptable, as
above, or if a certain value was assumed.
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separation

d
q

turbulence

q(o)

Nu

separation

wake

180

3A6 16

(d) The maximum heat transfer rate is at the stagnation point (thinnest boundary layer), decreas-
ing up to the ledge of the bluff body. The heat transfer increases in the wake, due to turbulent
motion. The sketch should include both maximum at the stagnation point, a decrease (possi-
bly a separation point), followed by an increase and approximately uniform heat transfer rate
in the back end. The increase in velocity should lead to an increase in heat transfer rate and
onset of turbulence with higher heat transfer.

(e) The density and viscosity of the fluid would change, and so would the relevant Prandtl and
Reynolds number. In addition, the range of Reynolds number could be very different from the
regime discussed, so that the relationships used for the drag coefficient might not be valid.
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4. Droplet

(a) Using a spherical coordinate system in the frame of reference of the droplet, and observing
that u · ∇(ρY ) = ∇ · (ρuY ) for uniform density steady flows, we have for the balance of water
vapour:

∇ · (ρuY −D∇ρY ) = 0

1

r2
d

dr
r2
(
ρuY − ρD

dY

dr

)
= 0

Integrating,

r2(ρuY − ρD
dY

dr
) =

ṁ

4π

where the latter equality appears because we assume a quasi-steady state, so that the total
mass evaporation at the surface of the droplet must be equal to the total mass flow rate at all
radii, so that ṁ = 4πρur2. We now use the fact that ρu = ṁ

4πr2 and rearrange the terms, so
that:

−ρD
dY

dr
=

ṁ

4πr2
(1− Y )

d ln(1− Y )

dr
=

ṁ

4πρD

1

r2

Integrating, and using the boundary condition at r → ∞, we have

ln(1− Y ) = − ṁ

4πρD

1

r
+ ln(1− Y∞)

ln

(
1− Y

1− Y∞

)
= − ṁ

4πρD

1

r

Therefore, at the surface r = R we now have:

ṁ

4πρD

1

R
= ln

(
1− Y∞

1− Ys

)
q.e.d.

(b) The mass of the droplet is m = ρl
4π
3 R3, so that the rate of change must be equal to the mass

leaving or condensing on the the droplet:

ρl4πR
2 dR

dt
= −ṁ = −4πρDR ln

(
1− Y∞

1− Ys

)
ρlR

dR

dt
= −ρD ln

(
1− Y∞

1− Ys

)
dR2

dt
= −2D

ρ

ρl
ln

(
1− Y∞

1− Ys

)
which is negative (evaporation) if Y∞ < Ys, or positive (condensation) otherwise. The value
is constant if Ys is constant, i.e. if Ts is constant.
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(c) The temperature affects the vapour pressure of water at the surface, so the surface concentra-
tion varies accordingly:

Xs −X∞ = (Ys − Y∞)
Wa

Ww
=

ps − ps,∞
pa

= K
Ts − T∞

T∞

(Ys − Y∞) = K
Ww

Wa
K

Ts − T∞

T∞

From the given temperature evolution:

Ts − Ts,0 = (T∞ − Ts,0)(1− e−t/τ )

Ts − T∞ = −(T∞ − Ts,0)e
−t/τ

Ys = Y∞ −K
Ww

Wa
K

(T∞ − Ts,0)

T∞
e−t/τ

dR2

dt
= −2D

ρ

ρl
ln

(
1− Y∞

1− Ys

)
= −2D

ρ

ρl
ln

(
1−

KWw

Wa
K

(T∞−Ts,0)
T∞

e−t/τ

1− Y∞

)

The rate of growth of R2 positive (condensation), and tends to zero as the temperature of the
droplet increases towards T∞, and the rate of radius growth goes to zero.

t

dR2

dt
increasing temperature
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