3B1 Crib 2023

1. (a)

Norm to 50Ω-> $5+2 \mathrm{j}(\mathrm{B} 1)$
Plot and read off smith chart $0.71 \angle 8^{\circ}$
n.b an analytic solution is also possible and equally valid.
(b)

Assume fringing fields extend by thickness of board.

$$
\begin{gathered}
C=\frac{(w+2 d) \epsilon_{o} \epsilon_{r}}{d} \\
Z_{0}=\sqrt{\frac{L}{C}}, v=\frac{1}{\sqrt{L C}}=\frac{c_{o}}{\sqrt{\epsilon_{r}}} \\
Z_{0}=\frac{1}{v C}=\frac{\sqrt{\epsilon_{r}}}{c_{0}} \frac{d}{(w+2 d) \epsilon_{o} \epsilon_{r}} \\
(w+2 d) \epsilon_{o} \epsilon_{r} c_{0} Z_{0}=\sqrt{\epsilon_{r}} d \\
(w)=\frac{\sqrt{\epsilon_{r}} d}{\epsilon_{o} \epsilon_{r} c_{0} Z_{0}}-2 d
\end{gathered}
$$

$\mathrm{W}=2.7 \mathrm{~mm}$
c)

See Smith chart. Start at B1. Rotate around centre to unit R circle (B2) clkwise towards generator.
Track length $0.5 \lambda-(0.239 \lambda+0.188 \lambda)=0.449 \lambda$
$\lambda=3 \times 10^{8} /\left(250 \times 10^{6 *} \operatorname{sqrt}(4.2)=58.5 \mathrm{~cm}\right.$
so track length is 262 mm .
Required reactance is $-2 \mathrm{j} \times 50,->6.4 \mathrm{pF}$
Reduce with higher ϵ_{r}, shunt C , or series L .
(ii) ϵ_{r} will change electrical length and the characteristic impedance. Z_{0} is now 62.5Ω. Need to switch smith chart to this characteristic impedance.

250+100j becomes 4+1.6j (C1)
$\lambda=3 \mathrm{e} 8 /\left(250 \mathrm{e}^{*}\right.$ sqrt(2.69) $=73.2 \mathrm{~cm}$, so the line is 0.358λ long.
Starting at 0.237λ this takes us to $(0.237+0.0 .358)-0.5=0.095 \lambda$ (point $C 2$ on smith)
Capacitor needs renormalising to 62.5Ω, so is -1.6 j
Now move around const R circle by -1.6 j . Start at $0.3+0.63 \mathrm{j}$ so end with $0.3-1.03 \mathrm{j}$. point C .
V reflection $=0.74 \angle-86^{\circ}$
A popular question with a range of answers. In (a) a common mistake was reading from the wrong axis of the Smith Chart. Most could get the width in (b) a common omission was the assumption that the fringing fields expand by the board thickness. The straight forward Smith chart in the $1^{\text {st }}$ part of (c) was well answered. The $2^{\text {nd }}$ part, most realised that the change in ϵ_{r} would give a change in the electrical length, but many missed that the impedance also changes.

2.
a) i) efficiency $=$ directivity $/$ gain $=-2 d B=63.1 \%$
efficiency $=r_{-}$rad/(r_rad+r_ohmic)
r_{-}rad+r_ohmic $=120$
r_{-}rad $=120 \times 63.1=75.7 \Omega$
(ii) Use gain to account for losses.

Peak radiated power is $10 \mathrm{dBm}+21 \mathrm{~dB}=31 \mathrm{dBm}=1.2589 \mathrm{~W}$
$\mathrm{S}=1.2589 /\left(4 \times \pi \times 10^{2}\right)=0.001 \mathrm{~W} / \mathrm{m}^{\wedge} 2$
Dipole has gain of 2.15 dB
$\mathrm{Ae}=0.0156 \mathrm{~m}^{\wedge} 2$
Power $=$ AexS $=15.6 u \mathrm{~W}$
b) i) Need to divide 20 MHz by 100 to get $200 \mathrm{kHz} .868 / 0.2=4340$ for phase comparator

Phase comparator compares $\frac{\theta_{V C O}}{M}$ and $\frac{\theta_{X T A L}}{N}$
ii) Call V_1 Vin and V_2 Vout for the filter.

$$
\begin{gathered}
\frac{d \theta}{d t}=j \omega \theta=\mathrm{K}_{\mathrm{o}} V_{2} \\
V_{1}=K_{p}\left(\theta_{\mathrm{ref}}-\theta_{0} / M\right) \\
V_{1}=-V_{2} \frac{R_{1}+R_{1} R_{2} j \omega C}{R_{2}} \\
K_{p}\left(\theta_{\mathrm{ref}}-\theta_{0} / M\right)=-\frac{j \omega \theta}{K_{f}}\left(\frac{R_{1}+R_{1} R_{2} j \omega C}{R_{2}}\right) \\
=-\frac{j \omega R_{1} \theta}{K_{o} R_{2}}+\frac{R_{1} \omega^{2} \theta C}{K_{o}}
\end{gathered}
$$

Use that $-\omega \theta=\dot{\theta}$ and $\omega^{2} \theta=\ddot{\theta}$. Compare to Mech databook.

$$
\begin{gathered}
\omega_{n}^{2}=M \frac{R_{1} C}{K_{o} K_{p}} \\
\frac{2 c}{\omega_{n}}=M \frac{R_{1}}{K_{o} K_{p} R_{2}} \\
c=\frac{\omega_{n} M R_{1}}{2 K_{o} K_{p} R_{2}}=\frac{M R_{1}}{2 K_{o} K_{p} R_{2}} \sqrt{\frac{M R_{1} C}{K_{o} K_{p}}}=\frac{1}{2 R_{2}} \sqrt{\frac{M R_{1}}{C K_{o} K_{p}}}
\end{gathered}
$$

(c)

At input side of the Wilkinson coupler, the transformed outputs appear in parallel. So need to match to 100 ohm to make a 50 ohm input. Therefore the lamda/4 sections should be sqrt $(100 \times 75)=86.6$ ohms. A 150 ohm resistor between the outputs completes the Wilkinson.

A few very good answers along with some very poor ones. In part (a) a worrying number struggled with the conversion of gains from $d B$ to linear in part (i). Part (ii) was mostly well answered although many double counted the antenna efficiency by using antenna gain and then multiplying by efficiency. (There is a small ambiguity as to whether a 50\% matching loss occurs on both sides, both answers were accepted). In (b) most realised that a divider is needed but omitted this from the loop analysis.

3 (a)

R_{1}, R_{2} : base bias resistors - set base voltage for $V_{c}=\frac{V_{s} \text { ad }}{2}$ ip inked
R_{3} : negative feedbecde to set stage gain
R_{4} : output resistance, witt gain $\simeq-R_{4} /\left(R_{3}+r_{e}\right)$
C : coupling capacitors of pass agral frequencies bt block de bras voltages between stages
(b) $R_{4}=50 \Omega$ for matched artpot impedame To determine gain: $33 \mathrm{~dB}=\times 44.7 \Rightarrow \times 6.7$ per stage witt 2 extra coupling stages compared is source \Rightarrow load care, we hare a required gain of $\times 13.3$ per stage

$$
\therefore R_{3}+r_{e}=\frac{50}{13.3}=3.76 \Omega
$$

with $R_{4}=50 \Omega$ and $V_{c}=6 \mathrm{Vdc}$. (12 suppl), $I_{c}=0.12 \mathrm{~A}$

$$
\therefore r_{e}=\frac{0.025}{I e}=0.21 \Omega \quad \therefore R_{3}=3.55 \Omega(\text { say } 3.3 \Omega
$$

choose $R_{2}=1.5 \times 50=75 \sqrt{2}$ and set $V_{B}=0.65+0.12 \times 3.3$

$$
\therefore \quad R_{1}=750 \Omega
$$

$$
\begin{aligned}
& =1.05 \mathrm{~V}+10 \% \text { optional } \\
& \simeq 1.1 \mathrm{~V}
\end{aligned}
$$

C should here small impedone $=1 \Omega$ \& 860 MHz so witt $C=10 \mathrm{nF}$, $\mid A \sim 0.02 \Omega$. Input imped. $=75\|700\| 750=62 \Omega$ o. le.
(c) For $-3 A B$ roll-off, we need value for ce and analyse small-signal model: $f_{t}=\frac{1}{2 \pi c_{i e} r_{e}}=22 \times 10^{9}$ witt re $=0.21 \Omega \Rightarrow \mathrm{Cie}=34.4 \mathrm{pF}$

3 canted. Emitter gain $=\frac{3.3}{(i)}=0.94$

$h_{i e}=$ hie. $\mathrm{re}=42 \Omega$. Refer inge side t grounddvakes
for $B-E$ equivalat componets:

$$
\begin{aligned}
& \text { Che } \times(1-0.94) \Rightarrow 2.06 p f \\
& \text { hie } \times \frac{1}{(1-0.94)} \Rightarrow 700 \Omega
\end{aligned}
$$

$$
\begin{gathered}
\text { wite loaded gain }=\frac{-50 / 2}{(3.3+0.21)}=-7.12 \\
c_{c b} \Rightarrow(1+7.12) \times 0.2=1.62 \mathrm{pf}^{\mathrm{f}}
\end{gathered}
$$

Hence input at becomes:

$$
-3 d B \text { rollo }=\frac{1}{2 \pi R^{\prime} c^{\prime}}
$$

$=1.56 \mathrm{GHz}$
\therefore fine for Z6OMHz operation, even wilt 2 -slegos cascaded. As $3 \mathrm{~A} B$ is twice operating ha . Then 2 stages cascaded will give $\approx-3 d$ kep operating fry. Ca ld decrede $R_{3} t$ compensate (by $\simeq 10 \%$ if reed).
(d) Use series LC between stages. $Q=5=\frac{W L}{r}$ where $r=(50+62)$ in place of central coupling capacitor and $C_{r e s}=\frac{r}{w^{2} L}$ but Cis 5 mall and L large: $0,33 \mathrm{pF}$ and 104 nt t respectively. Use parallel $L C$ wite $Q=5=\frac{R}{3 W L}$ an $R=50 \| 62=27.7 \Omega$ then
 coupling caps.regat. Is dc, blocker. cor ser ext (or L will shat bias to gid.)

4(a) (i) High-pass vevs circuit: 0.2 Hz roll-on

Use Bessel filter for pulse shape retention -important \therefore in applicahoin. Downside is reduced sharpness. low freq. cul-off. $f-3 A B=\frac{f_{n}}{2 \pi R C}$ for high-pass

$$
\begin{aligned}
\therefore \quad 0.2 & =\frac{1.432}{2 \pi .10^{5} \cdot C_{1}}=\frac{1.606}{2 \pi .10^{5} \cdot C_{2}} \\
\therefore C_{1}=11.4 \mathrm{H}, \quad & C_{2}=12.8 \mu \mathrm{~F} \\
R_{1} & =\left(A_{1}-1\right) R=8.4 \mathrm{k} \Omega, \quad R_{2}=\left(A_{2}-1\right) R=75.9 \mathrm{k} \Omega
\end{aligned}
$$

(ii) Need is amplify signals by ~ 1000 's including vas gain of $1.084 \times 1.759=1.91 \quad \therefore \approx \times 500$ preamp.

filter output amplitude >IV pulses. Ct holds threshold for Say $10 \mathrm{~s} \therefore C_{2}=1000 \mu \mathrm{~F}, R_{3}=10 \mathrm{k} \mathrm{\Omega}, R_{4}=100 \mathrm{k} \Omega$ for 0.5 V threshold. Larger, Ales will increate Threshold. R5 and Rt give Switching hysteresis $\simeq 0.1 \mathrm{~V}$ say $\therefore R_{5}=1 \mathrm{kN}, R_{6}=47 \mathrm{kR}$

4 (b)

(1) $i b_{1}=-\frac{v_{e}}{h_{\text {ie }}}$, (2) $i b_{2}=\frac{v_{0}-v_{e}}{h_{i e}}$, (3) $v_{e} \approx R_{T} h_{i}\left(i_{1}+i b_{2}\right)$,
(4) $i_{0}=h h_{e} i b_{1}+i b_{2}+v_{0} / R_{b}$ Subst. (1) and (2) into- (3):-

$$
\begin{align*}
V_{e} & =-R_{T} h_{k} \frac{V_{e}}{h_{i e}}+R_{T} h_{h e} \frac{V_{0}}{h_{i e}}-R_{T} h_{k} \frac{V_{e}}{h_{i e}} \\
& \therefore V_{e}\left(X+\frac{2 R_{T} h_{h e}}{h_{i e}}\right)=R_{T} \frac{h_{e} V_{0}}{h_{\text {he }}} \quad \therefore V_{e} \approx \frac{V_{0}}{2} \tag{5}
\end{align*}
$$

silost. (1) and (2) int (4) and whes. for ve usity (5)

$$
\begin{aligned}
& \therefore i_{0}=-\frac{h h_{e} V_{0}}{2 h i e}+\frac{V_{\phi}}{2 h i e}+\frac{V_{0}}{R_{b}} \\
& \therefore i_{0}=V_{0}\left(\frac{1}{R_{b}}-\frac{h h_{e}}{2 h i e}\right) \text { and as } \frac{h_{k}}{h h_{e}}=r_{e}, \\
& Z_{0}=\frac{V_{0}}{i_{0}}=\left(\frac{V_{b}}{R_{b}}+\frac{1}{-2 r_{e}}\right)^{-1} \Rightarrow Z_{0}=R_{b} / /-2 r_{e}
\end{aligned}
$$

$$
\begin{aligned}
& f_{\text {res }}=\frac{1}{2 \pi \sqrt{L C}} \\
& =1.58 \mathrm{GHz} \\
& \text { with } L=\ln H \\
& C=10.1 \mathrm{pF} \\
& \text { Parasitic \|loss } R \\
& =Q \omega L \\
& =Q 2 \pi \text { fres } L \\
& =199 \mathrm{\Omega}
\end{aligned}
$$

Lood R

$$
\begin{aligned}
& =100 \Omega \\
& \therefore \text {-ve resistance } \\
& <100 / 199 \Omega \\
& <67 \Omega
\end{aligned}
$$

\therefore choose $-R=-50 \Omega \therefore r e=25 \Omega=\frac{0.025}{I_{c}}$
curment in $R_{T} \Rightarrow \frac{(3-0-65)}{R_{T}} \Omega=2 \times I_{C}=2 \mathrm{~mA}$
$\therefore R_{T}=1.18 \mathrm{k} \Omega$
To ture, add varactor acmss le circuit. To redvce fres by by 40% means increasing C by almost 100%, hence 10 pf varactor

Examiner's comments

Q1 and Q2 - comments in crib text

Q3 RF amplifier

A very popular question with good attempts on the whole. The 2-stage amplifier design was well answered, although the gain was sometimes incorrect by a factor of 2 either way. The frequency response was also quite well attempted in many cases, although the unloaded gain was occasionally considered rather than the loaded value. The resonant filter section at the end attracted a number of attempts of rather variable quality.

Q4 VCVS filters and oscillator

The VCVS filter section was quite straightforward and well attempted in most cases, with a correct choice of filter type and values in many cases although a Chebyshev filter would have been a poor choice given the importance of pulse shape. The circuit design was less well answered in general, the best attempts included a variable gain section or amplitude tracking threshold. The negative impedance oscillator was generally well attempted.

