END OF PAPER

ر°ده)	253 Vac
ζζ,	545 Y
e)	$I_{n} = \sum_{n=1}^{\infty} \left(\frac{636}{\pi^{2}n} \frac{V_{LL}}{R} \right)$
3° b (1)	D
dij	
4° a, i	$V_{2} = \left(\frac{D}{1-D}\right) \frac{N_{2}}{N_{1}} V_{1}$
i	1, 500 ut
، رطی	VAC
ن	$R_{\tau} = (\frac{N_{2}}{N_{1}})^{2} \frac{8R}{T^{2}}, W_{n} = \frac{W}{W_{T}}, W_{r} = \frac{1}{\sqrt{2}}$ $R_{\tau} = (\frac{N_{2}}{N_{1}})^{2} \frac{8R}{T^{2}}, W_{n} = \frac{W}{W_{T}}, W_{r} = \frac{1}{\sqrt{2}}$
	RT = (NZ) 8R W = WY, WY JZrCr