Q।
(a)

(b) Th has lower switching loss. The boly diole of T_{2} conderts curmet dusing deactine. Thenefre, when T_{2} swirdes on atter tb deedtine, it hes rearly zero coltac and the suitanik on loss is nearly tero.
(C) ${ }^{i}$

$$
\begin{aligned}
L \frac{\Delta i_{L}}{\Delta t}=V_{1}-V_{2}, L & =\frac{\left(V_{1}-V_{2}\right) \Delta t}{\Delta i_{L}} \\
& =\frac{(48-\Omega) \times \frac{1}{4} \times \frac{1}{50 \times 10^{3}}}{4} \\
& =4.5 \times 10^{-6} \mathrm{H} \\
& =4.5 \mathrm{wh}
\end{aligned}
$$

(d)

$$
\begin{aligned}
L^{\prime}=\frac{\left(V_{1}-K_{L}\right) \Delta t}{\Delta i_{L}^{\prime}} & =\frac{(+8-12) \times \frac{1}{4} \times \frac{1}{500 \times c^{3}}}{20} \\
& =0.9 \mathrm{\mu H} \quad 8
\end{aligned}
$$

(e) $0<t<\frac{T}{4}$. T_{1} conductip.

$$
\begin{aligned}
P_{T_{1}}=\frac{\int_{0}^{T / 4} i_{T}^{2} R d t}{T} & =\frac{R}{T} \int_{0}^{T / 4}\left(\frac{80}{T} t\right)^{2} d t=\left.\frac{(8)^{2} \cdot R}{T^{3}} \frac{t^{3}}{3}\right|_{0} ^{T / 4} \\
& =\frac{100}{3} R=0.067 \mathrm{~W}
\end{aligned}
$$

$\frac{T}{4}<-t<T, T_{2}$ condanting.

Mlteratile: using Rmsceomet to find the to tal coss.

$$
\begin{array}{ll}
P=\left(\frac{20}{3}\right)^{2} \cdot R=0.267 \mathrm{w} . & P_{T_{1}}=\frac{1}{4} P=0.067 \mathrm{w} \\
P_{\sqrt{2}}=\frac{3}{4} P=0.2 \mathrm{w}
\end{array}
$$

(f) CCM :
$I=I_{R C}+$ Iripple , $I_{\text {iphbe hespobluche } 2 \mathrm{~A}}$

$$
\begin{aligned}
& I_{\text {RmS }}=\sqrt{I_{R}^{2}+I_{\text {mpob }}{ }^{2} R \mathrm{RNS}}=\sqrt{10^{2}+\left(\frac{2}{\sqrt{5}}\right)^{2}} \\
& P_{\text {cosscm }}=I_{\text {Rns }}^{2} R=\left(100+\frac{4}{3}\right) R
\end{aligned}
$$

Critical Ccan
$I=I_{D C}+I_{\text {ripple }}$. Iniph hes pod volue coA

$$
\begin{aligned}
& I_{\text {Rns }}=\sqrt{I_{R}^{2}+I_{\text {Fiple }}^{2}}=\sqrt{10^{2}+\left(\frac{10}{15}\right)^{2}} \\
& P_{\text {cosscariticun }}=\left(100+\frac{100}{3}\right) R \\
& \frac{P_{\text {cirtacem }}}{P_{\text {can }}}=\frac{\frac{400}{0}}{\frac{3.4}{3}}=1.315
\end{aligned}
$$

(b) The copacitor is veng lage thus +6 ac cottge is clamped of the peak coltgre of inpt.

$$
V_{D C}=\sqrt{2} \cdot V_{\text {acrms }}=\sqrt{2} \times 230=325 \mathrm{~V} .
$$

the impot curnet is very distated so the power factor is poor.
c) Flux is continears, $\frac{V_{0}}{V_{\text {in }}}=\frac{N_{1}}{N_{1}} \frac{D}{1-D}$

It's a step doun Flyback, ths $\frac{N_{2}}{\alpha_{i}}=\frac{1}{20}$

$$
\frac{D}{1-D} \cdot \frac{1}{20}=\frac{15}{325}, D=0.48
$$

(d)

(e) $M_{a x} B_{m}$ is set by satumotion poit

$$
\begin{aligned}
& B_{m}=0.75 \times 0.36=0.27 \mathrm{~T} . \\
& \phi_{m}=B_{m} \cdot A=0.27 \times 0.25 \times 10^{-4}=0.0675 \times 10^{-4} \mathrm{~Wb} \\
& \quad N_{1} \frac{d \phi}{d t}=V_{\text {in }} \\
& N_{1}=\frac{\Delta t V_{\text {in }}}{\Delta \phi}=\frac{0 T V_{i n}}{\Delta \phi}=\frac{0.48 \times \frac{1}{500 \times 0^{3}} \times 332}{}=46.2 \approx 46 \\
& N_{2}=\frac{46}{20}=2.3 \approx 2
\end{aligned}
$$

Using the modified tums ration $\frac{46}{2}=23$, modiftes duty rotio $\frac{D^{\prime}}{1-D^{\prime}}=23 \times \frac{15}{3^{25}}$

$$
D^{\prime}=0.515
$$

(f)

Assum: (8) B is eventy distribated in the coe
(2) Leakge inductance is negleated.

$$
\begin{aligned}
& \frac{I_{2 \max } \cdot(1-D) T}{2}=I_{2} \cdot T \\
& I_{2 m a x}=\frac{2 I_{2}}{1-D}=\frac{2 \times 2}{1-0.515}=8.25 \mathrm{~A} .
\end{aligned}
$$

Magnetis indurtance reterred to $2^{\text {nd }}$ side,

$$
\begin{aligned}
V_{0}=L_{m} \frac{\Delta i_{2}}{\Delta t}, L_{m}=\frac{V_{0} \Delta t}{\Delta i_{2}} & =\frac{V_{0}(1-0) T}{I_{2000}} \\
& =\frac{15 \times 0.485 \times \frac{1}{J 00 \times 0^{3}}}{8.25} \\
& =1.76 \times 10^{-6} \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
L_{m}=\frac{N_{2}^{2} \mu_{s} \mu_{x} A}{l}, \mu_{r} & =\frac{L_{m} \cdot l}{\mu_{2}^{2} A \mu_{0}} \\
& =\frac{1.76 \times 10^{-6} \times 10^{-2}}{2^{2} \times 0.25 \times 10^{-4} \times 1.26 \times 10^{-6}} \\
& =139.6
\end{aligned}
$$

Q3"
(a) $f_{r}=\frac{1}{2 \pi \sqrt{4 C_{r}}}$
(b)

Wetpe squore, cument sim.

$$
R_{S}=\frac{N^{2} \cdot \frac{2 \sqrt{ } V_{0}}{\pi}}{\frac{\pi I_{2}}{2 \pi}}=N^{2} \cdot \frac{8 R}{\pi^{2}}
$$

$$
R_{S}=\frac{8 \lambda^{2} R}{\pi^{2}}
$$

(d) The magnetisp induatoe of traspon is vey lange, At $f s$, the tanke imedowa is zero.
Therfere, $V_{0}=\frac{V_{A B 1}}{N}=\frac{4}{\pi} \frac{V_{1}}{N}$
(e) In this $\angle L C, k=\frac{L_{m}}{L_{r}} \rightarrow \infty$.

When Q is smadl, the gain clanges ivisignitiantly when f_{s} devictes from f_{r}.
For a given vated curmet, the Q can be set to be small. Then, clens the lood is reduces Q can only be eien smoller. The dood douns the gain is becoing even surother. Thus the gain has even sundler charges when f_{s} is ust t_{r}. -therefore, no unotter the lood chage, the gain vemaits vearly undaaped.
a)

[20\%]
(a)

4
(b)

- $C_{G D 1}$ - Miller capacitance (saturation region - this capacitance is small)
- $C_{G D 2}$ - Miller capacitance (linear region -this capacitance is large)
- $C_{G S}$ - Gate-Source capacitance
- $t_{\text {doff }}$ - Initial delay time
- $t_{r v}$ - Rise time in which $v_{D S}$ reaches its off-state value $V_{D S(o f f)}$ from $V_{D S(o n)}$.
- $t_{f i}$ - Time taken for i_{D} to fall from its full load value I_{o} to 0 ; the end of this

The two-stage inverters are typical CMOS with a n-channel on the low side and p-channel on the high side. The second inverter has larger transistors (e.g. $3 x$ width or even larger) to minimise the on-state resistances of the n-channel and p-channel transistors. The gate resistance is not specifically shown, but could be internal or added between the output of the second stage and the gate of the power transistor to control the dVdt .
[15\%]

The shape of the gate signal is dictated by the switching conditions (here it is shown to be inductive0 [15\%]

The turn-on delay time is until the channel becomes open - Vth.
The input capacitance is the parallel combination of CGD and CGS. $\mathrm{R}=\mathrm{RG}$.
C=CGS + CGD [10\%]

