3342022 Cib
$T_{\text {un }}$ Flak Teng Ling

1. a) The trapezoidel BLDCM ho a concentated stater wanding in whic conduators are wound arcand indiridual polepieces. The sinusoidal BCDCM uses a conventanal three phose weriding, typeielly with multiple crids/phase, aiming to produce a suniusicially - distranted air guap field. The roters are of sumilar constrution, poth wlliaxy surfau-mounted permanent magnels attached to bavking cion.
[10%]
b) (1) $T_{\text {red }}=3 k I_{\text {ratd }}=3 \times 1.8 \times 150=810 \mathrm{Nm}$.

Rated speed correspends to the moormum sueed at which rated tropue can ke delivered $\therefore I=I_{\text {ratta }}=150 \mathrm{~A}, V=415 / \sqrt{3}$

$$
\begin{aligned}
& V^{2}=E^{2}+\left(\omega l_{-} I_{\text {ratad }}\right)^{2}=\left(\frac{l \omega}{p}\right)^{2}+\left(\omega L_{s} I_{\text {ratidet }}\right)^{2} \\
& \left(\frac{415}{\sqrt{3}}\right)^{2}=\omega^{2}\left(\left(\frac{1.8}{3}\right)^{2}+\left(2.8 \times 10^{-3} \times 150\right)^{2}\right) \\
& \omega=327 \cdot \mathrm{rad} \mathrm{~s}^{-1} \text { so } \omega_{\text {ratal }}=\frac{\omega}{p}=109 \mathrm{rads}(1041 \mathrm{rpm}) \\
& {[10 \%]}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& T=70.7 \% \text { of rater torque }=573 \mathrm{Nm}=3 \mathrm{kI} \\
& \Rightarrow I=106 \mathrm{~A}
\end{aligned}
$$

Same method as (i): $\left(\frac{415}{\sqrt{3}}\right)^{2}=\omega^{2}\left(\left(\frac{1.8}{3}\right)^{2}+\left(2.8 \times 10^{-3} \times 106\right)^{2}\right)$

$$
\omega=358 \mathrm{rads}^{-1} \text { so } \frac{\omega_{\bar{m}} \frac{\omega}{p}=\frac{119 \mathrm{rads}^{-1}(1139 \mathrm{rpm})}{[10 \%]}}{\left[\begin{array}{l}
\omega
\end{array}\right)}
$$

iii) Fielf-reakeinuy unvolve injecting a compenent of statie current that will at 15 redue the tied arrop puald, allorieng gpeater spedb b be istained at Me Bpense of Arrque and efficenis.

Note lhat $\beta \neq 90^{\circ}$ to achere thus.
For moriminn seed, $I=I_{\text {rated }}$ so $\sin \beta=0.707 \Rightarrow \beta=135^{\circ}$,

$$
V_{=} V_{\text {max }}=415 / \sqrt{3}
$$

Coseni male: $V^{2}=\left(\frac{k \omega}{p}\right)^{2}+\left(\omega L_{s} I_{\text {man }}\right)^{2}-2 \cdot \frac{k \omega}{p} \cdot \omega L_{s} I_{\text {mat }} \cos 45^{\circ}$

$$
\begin{aligned}
& \left(\frac{415}{\sqrt{3}}\right)^{2}=\left(\frac{1.8 \omega \omega}{3}\right)^{2}+\left(2.8 \times 10^{-3} \times 150 \omega\right)^{2}-2 \times \frac{1.8}{3} \times 2.8 \times 100^{-3} \times 150 \times 0.707 \omega^{2} \\
& \omega=56407 \mathrm{mads}^{-1}, \frac{\omega}{p}=188 \mathrm{rus}^{-1}(1798 \mathrm{rpm})
\end{aligned}
$$

$$
\rho_{\text {out }}=T_{\omega}=573 \times 188=108 \mathrm{kw}
$$

Sine rale: $\frac{\sin d}{\cos I}=\frac{\sin 45^{\circ}}{415 / \sqrt{3}}$ quineng $d=44.4^{\circ}$
c) i)

$$
\begin{align*}
& E_{p h}=\frac{30}{2}=15=k \omega_{r}=k \times 800 \times \frac{2 \pi}{60} \\
& k=0.179 \mathrm{Vs} \mathrm{rad}^{-1}
\end{align*}
$$

(内) $T=2 k I=2 \times 0.179 \times 5=1.79 \mathrm{Nm}$
Mormmin $\operatorname{Mine}-$ line valtuge $=48 \mathrm{~V}$, so $V_{\text {ghnos: }}=24 \mathrm{~V}$

$$
\begin{align*}
& 24=E+0.6 \times 5 \quad E=21 \mathrm{~V} \\
& \omega_{\text {raty }}=\frac{21}{0.179}=117 \mathrm{rads}^{-1}(1120 \mathrm{rma})
\end{align*}
$$

iii) Cument is 5 A for $2 / 3$ ugle, OA for $1 / 3$ uple

$$
\therefore I_{\text {mis }}=\sqrt{\frac{2}{3} \times 5^{2} \frac{1}{3}}=5 \sqrt{\frac{2}{3}}=4.08 \mathrm{~A} \quad[10 \%]
$$

iv) 50% noted taque $\Rightarrow I=2.5 \mathrm{~A}, E=24 * 0.6 \times 2.5$

$$
\begin{aligned}
& \omega=\frac{E}{K}=\frac{22.5}{0.179}=126 \mathrm{rads}^{-1}(1200 \mathrm{rpm}) \\
& P_{\text {cout }}=T_{\omega}=\frac{1.79}{2} \times 126=113 \mathrm{~W} . P_{\text {coro }}=2 I^{2} R=2 \times 2.5^{2}=0.6=\frac{\mathrm{W}}{} \\
& P_{\text {in }}=\frac{113+20}{20}=127 \mathrm{w} \quad \eta=113 / 127=79.0
\end{aligned}
$$

2(a) PM brushed de motars huve a froed foeld but are easy to centrol with a varallle de power supply (speed timpus). They are othen found in tors such oo electrie cass trains Where a low coolage du supply is avaibidle from betterie. Stesper moters requine a mone compler 2 -phas drrie, but by pulsing the wandenie sequentially, lighty acurate oper-boup pasitum untred 5 achiverd. They are cmumaly found in 2-D and 3-1) priters.
b)

$$
\begin{aligned}
& \text { 1) } V_{a}=12=l_{a}=k \phi \omega=k \phi \times 1000 \times \frac{2 \pi}{60} \\
& k \phi=0.115 \mathrm{Vs} \mathrm{rad}^{-1} \\
& T_{\text {rat4 }}=k \phi C_{\text {ratas }}^{i}=0.115 \times 3=0.344 \mathrm{Nm} \\
& 20-i_{\text {a intur }} R_{a}=l_{a_{\text {ratal }}}=k \phi W_{\text {rated }} \\
& 20-3 \times 2=1420.115 \omega_{\text {ratad }}=122 \mathrm{rad} \mathrm{~s}^{-1}(1167 \mathrm{mpa})
\end{aligned}
$$

Moorimum speed cerreopenal to $T_{L}=0 \therefore l_{a}^{\prime}=0, l_{a}=V_{a}$
(ii)

$$
20=k \rho \omega_{\text {max }} \quad \omega_{\text {mas }}=\frac{20}{0.115}=175 \mathrm{rads}^{-1}\left(1667_{\mathrm{rmh}}\right)
$$

c) $1400 \mathrm{rpm}=1400 \times \frac{2 \pi}{60}=147 \mathrm{rad} \mathrm{s}^{-1}$.

Therefore we reed to break e the calculate down into two peans:
(1) $\omega=0>C_{\text {rated, }}$ where $T=T_{\text {ratel }}=0.344$.
(2) $\left.\omega_{\text {rater }}<\omega \leqslant 14\right] \mathrm{rads}^{-1}$, where T redwes bineurlf to zero
(1) $T=0.344=J \frac{d \omega}{d t}$ so $\frac{d \omega}{d t}=6.88 \mathrm{rads}^{-2}$
so $\omega=6.88 t$ form $\omega=0 \Rightarrow 122 \mathrm{mds}$.
Temé taken to accelerate from 0 to $122 \mathrm{rads}^{-1}=\frac{122}{6.88}=17.7 \mathrm{~s}$
(2) Equation for the torque is $T=\frac{\operatorname{kopls}}{\sqrt{a}}-\frac{(k g)^{2}(0)}{r_{a}}$
giving $1.15-6.613 \times 10^{-3} \omega$
(Cheeks: this gives 0.344 at $\omega=122$ and O or $\omega=175$)

$$
\begin{aligned}
& T=J \frac{d \omega}{d t} \text { so } J \int_{1.15-6.613 \times 10^{-3} \omega}^{147}=\int_{0}^{t_{1}} d t \\
& \frac{0.05}{6.613 \times 10^{-3}} \int_{122}^{147} \frac{d \omega}{175-\omega}=t_{1} \\
& 7.56 \ln \frac{53}{28}=t_{1}=4.82 \mathrm{~s} \\
& \therefore \text { Total tune }=17.7+4.82=22.5 \mathrm{~s} \quad[25 \%]
\end{aligned}
$$

d)

W th no torque the stepper motor will align itself to minimise He stored magnetic energy ie at a stable equibibruins. With torque applied, the rooter will more so Mat the mater torgese is equal to Nh e applied torque. This will take it away from a full step position, and Me small angle moved through $\triangle O$ is the angular position error.
ii) $T=\hat{T} \sin 500 \quad \hat{T}=\frac{1.5}{2} \times 0.25=0.1875 \mathrm{Nm}$

$$
\therefore 0.1=0.1875 \sin 50 \text { so } \theta=0.64^{\circ} \text { ie. }
$$ around $1 / 3$ of the full step sje of 1.8°.

$$
\therefore f_{s}=\frac{50}{3} H_{3}=\frac{1}{2 \pi} \sqrt{\frac{50 \times 75^{0.25}}{J}} \text { given } J=\frac{600}{1.14 \times 10^{3}}
$$

Stepper motors have speed o Mat should be avoided so Mat resonance is not bruited, whin can Caver missed steps.
Two ways to aroid: aceelente through quill, use mirostepping.
a) Specific magnetic loading: Average flux density over one pole pitch.

Specific electric loading: Total effective current averaged around the air gap.
b) Specific magnetic ladin: \bar{B}
specif elector Ioadip:
Machine appanet power: S

$$
\begin{aligned}
& S=\frac{P}{\eta \% \cdot P \cdot f}=\frac{\pi}{\sqrt{2}} \frac{w}{P} \bar{B} \cdot \bar{J} \cdot V_{0 l}, \text { Vol is te colure of rotor. } \\
& \frac{50 \times 10^{3}}{0.8 \times 0.8}=\frac{\pi}{\sqrt{2}} \times \frac{6000 \times 2 \pi}{60} \times 0.5 \times 30000 \cdot V_{0} l \\
& V_{0}\left(=3.73 \times 10^{-3} \mathrm{~m}^{3} \quad(3.73 \mathrm{~L})\right.
\end{aligned}
$$

C) Assume the Stator resistome and leabge indatan an neglected,

$$
\begin{aligned}
& V_{p h}=E=l d \cdot\left(\frac{W}{p}\right) \cdot N_{p h} \cdot k_{d} \cdot k_{p} \cdot B_{r m s} \\
& l=\frac{V_{0} l}{\pi\left(\frac{d}{2}\right)^{2}}=\frac{3.73 \times 10^{-3}}{\pi \cdot\left(\frac{24010^{-3}}{2}\right)^{2}}=0.0825 \mathrm{~m} \\
& B_{r m s}=\frac{\bar{B} \pi}{2 \sqrt{2}}=\frac{0.5 \times 3.49}{2 \times 1.414}=0.56 \mathrm{~T} \\
& k_{d}=\frac{\sin \left(\frac{m \beta p}{2}\right)}{m \sin \left(\frac{\beta p}{2}\right)}, m=\frac{48}{3 \times 8}=2, \beta=\frac{360^{\circ}}{48}=7.5^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& k_{d}=\frac{\sin \left(\frac{2 \times 7.5 \times 8}{2}\right)}{2 \sin \left(\frac{2.5 \times 8}{2}\right)}=0.866 \\
& k_{p}=\cos \left(\frac{\alpha p}{2}\right), \quad \alpha=\beta=7.5^{\circ}, \quad k_{p}=\cos \left(\frac{7.5^{\circ} \times 8}{2}\right)=0.866 \\
& 260=0.0825 \times 0.24 \times 200 \pi \times 0.866 \times 0.866 \times 0.56 \times \mathrm{Nph} \\
& N_{p h}=4 p .8 \text { tums. }
\end{aligned}
$$

There are $\frac{48}{3}=16$ slots per phase. Therefore the tans per phase is ideally integer of 16 , yield:

$$
\text { Mph } \approx 48
$$

Therefor, 3 turns per shot.
Z_{4} a) i)

(i)

iii)

(1) Torque is lineary popotional to speed
(2) A much nider and unifomed adjastbility of speed Can be olbtained
(3) Hish etticency, no addifiond resstive (ors.

R_{1} : statar vesistonce
$L_{l_{1}}$: Stator leakge indurtome
$L m$: magnetising induntome
$L_{l_{2}}$: rotor leakage inductanu referred to stator
R_{2}^{\prime} : rotor resistance retend to stator.
S : slip
w: Synchooners angular frequencry.
V_{1} : phase woltage
I 1: stator pherse cunt
In: maguetisinp cumet per phese
I_{2}^{\prime} : sotor phase cermat veferned to stactor.

$$
I_{m}=\frac{V_{1}}{W L_{m}}, \quad \phi=I_{m} L_{m}
$$

The air gep ftux of shald be kept constant thenefore I_{m} is constant. Therepore $\frac{V_{1}}{W}$ is constant. W is syichrowows greed. The inverter or droive cottage has frequeny as P.W therefore the invertor or drive voltage/frepmerg should be conitant.
C) i)

$$
R_{j}+R_{a}=R
$$

when opartity at $D . C$

$$
\begin{aligned}
& E=K_{c} I_{a} \omega_{r} \\
& V=R I_{a}+E
\end{aligned}
$$

$$
\begin{aligned}
& W_{r 1}=\frac{60}{60} \times 2 \pi=2 \pi, W_{L_{2}}=\frac{150}{60} \times 2 \pi=3 \pi \\
& E_{1}=2 \times 2 \pi \times K_{c}=4 \pi k_{c}, \quad E_{2}=3 \times 3 \pi \times k_{c}=3 \pi k_{c} \\
& 7=2 R+4 \pi k_{c} \Rightarrow\left\{\begin{array}{l}
K_{c}=0.4 \\
R=1 \\
14.3=3 R+8 \pi k_{c}
\end{array}\right.
\end{aligned}
$$

when opercting at A.C

$$
T_{\text {ave }}=\frac{1}{2} \mathrm{ke}\left(\hat{I}_{\text {aac }}\right)^{2}=\frac{1}{2} \times 0.4 \times(8 \sqrt{2})^{2}=25.6 \mathrm{Nm}
$$

ii)

$$
\begin{aligned}
& P_{\text {out }}=T_{\text {ave }} \cdot w_{r}=25.6 \times \frac{270}{60} \times 2 \pi=723 \mathrm{~W} . \\
& P_{\text {loss }}=I_{\text {ac }}^{2} R=8^{2} \times 1=64 \mathrm{~W} \\
& S=V I=110 \times 8=880 \mathrm{VA} . \\
& P \cdot f=\frac{P_{\text {oat }}+P_{\text {loss }}}{S}=\frac{723+64}{880}=0.89 . \\
& \eta \%=\frac{P_{\text {at }}}{P_{\text {OAt }}+P_{\text {los }}}=\frac{723}{723+64}=91.9 \%
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{40-20}{70-20}=e^{-\left(\frac{((2-10) \times 60}{\tau}\right)} \Rightarrow \tau=131 \mathrm{sec} . \\
& P_{\text {(cos }}=\frac{1000 \times 0.5}{0.9} \times 0.1=56 \mathrm{w} \\
& 70=\frac{56}{k}+\left(20-\frac{56}{6}\right) e^{-\left(\frac{60 \times 15}{131}\right)} \\
& k=0.794 \mathrm{w} / \mathrm{k} \\
& \tau=c / k, \quad c=\tau \cdot k=131 \times 0.794=104 \mathrm{~J} / \mathrm{k}
\end{aligned}
$$

Examiners' comments

Q1 Sinusoidal and trapezoidal Brushless DC motors: 49 Attempts, Mean 12.8/20

All candidates attempted this question, and there were many excellent attempts. The most common errors concerned mixing up mechanical and electrical angular frequencies, and calculating quantities from phasor diagrams when analysing operation under field-weakened conditions in (b)(iii). Some candidates confused rated and maximum speed at various points.

Q2 Brushed DC motors and stepper motors: 45 Attempts, Mean 14.1/20

A popular questions with many very good attempts. A common error in (b)(ii) was taking the torque characteristic beyond rated speed as a constant power one rather than linear. Very few candidates succeeded with (c), although many understood the need to consider the two parts of the torquespeed curve separately. Part (d) achieved many excellent answers, with only part (iii) causing problems, to do with mixing up frequencies.

Q3: Induction motor design: 14 Attempts, Mean 12.64/20

Most students answered Part (a) and (b) well. However, a common mistake of forgetting the power factor for the apparent power in Part (c) has been observed. Most of students could list the essential equations but not able to use the right parameters to answer Part (d).

Q4 Induction and universal motors, and duty cycle analysis: 39 Attempts, Mean 10.2/20

The Part (a) and (b) have been answered well. Only a very few students answered the Part (c) right. The common mistake of the AC universal machine torque has been observed. Common mistake of finding the actual loss when half load of Part (d) has also been observed.

