QUESTION 1

(a)

Advantages: improved efficiency (no field winding losses); high power/torque density; more reliable (no commutator/brush wear; no mechanical switching \rightarrow less maintenance)

Disadvantages: increased complexity of control (need sensors); can't vary field strength so field weakening for higher speeds is not possible
(b)

Drive for all-electric vehicle needs high power/torque density, minimal torque ripple and be highly controllable (torque, speed); no brushes (vs field-wound counterpart).

Trapezoidal BLDCMs are suitable for many applications, such as white goods, computers, etc. Control strategies are less complicated (reduced hardware requirements \rightarrow cheaper); sensorless control is possible, whereas rotor position sensing is needed for the sinusoidal BLDCM.
(c)(i)
$2000 \mathrm{rpm}=2 \pi / 60 * 2000=209.4 \mathrm{rad} / \mathrm{s}$
$\mathrm{E}_{\mathrm{ph}}=\mathrm{E}_{\text {line }} / 2=24 / 2=12 \mathrm{~V}=\mathrm{k} \omega_{\mathrm{r}} \rightarrow \mathrm{k}=0.0573 \mathrm{Vs} / \mathrm{rad}$
Rated torque, $\mathrm{T}_{\text {rated }}=2 \mathrm{kI}_{\text {rated }}=2 * 0.0573 * 4=0.458 \mathrm{Nm}$
Max. line-line voltage $=48 \mathrm{~V}$ so max. phase voltage $=24 \mathrm{~V}$
$24=\mathrm{E}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=\mathrm{E}+4^{*} 1.5 \rightarrow \mathrm{E}_{\max }=18 \mathrm{~V}$ at rated torque
$\mathrm{E}=\mathrm{k} \omega$ so $\omega_{\text {max }}=\mathrm{E}_{\text {max }} / \mathrm{k}=18 / 0.0573=314.14 \mathrm{rad} / \mathrm{s} \rightarrow \mathrm{n}_{\mathrm{rated}}=3000 \mathrm{rpm}$

(c)(ii)

50% rated torque $\rightarrow \mathrm{I}=0.5^{*} 4=2 \mathrm{~A}$
$\mathrm{V}_{\mathrm{ph}}=\mathrm{E}+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}} \rightarrow \mathrm{E}=24-2^{*} 1.5=21 \mathrm{~V} \rightarrow \omega=\mathrm{E} / \mathrm{k}=21 / 0.0573=366.5 \mathrm{rad} / \mathrm{s} \rightarrow \mathrm{n}=3500 \mathrm{rpm}$
10% max. speed: $\mathrm{V}_{\mathrm{ph}}=\mathrm{k} \omega+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=0.0573 * 36.65+2 * 1.5=6.15 \mathrm{~V} \rightarrow$ duty cycle $=0.256$
50% max. speed: $\mathrm{V}_{\mathrm{ph}}=\mathrm{k} \omega+\mathrm{I}_{\mathrm{a}} \mathrm{R}_{\mathrm{a}}=0.0573 * 183.25+2 * 1.5=18.75 \mathrm{~V} \rightarrow$ duty cycle $=0.781$
(d)(i)
$\mathrm{T}_{\mathrm{m}}=2 \mathrm{kI}=2 * 0.0573 * 3=0.344 \mathrm{Nm}$
$\mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \omega_{\mathrm{r}}^{2}$ and $@ 1500 \mathrm{rpm}=0.15 \mathrm{Nm} \rightarrow \mathrm{k}_{\mathrm{f}}=0.15 /(1500 * 2 \pi / 60)^{\wedge} 2=6.08 \times 10^{-6}$
At final speed, inertia has no effect since $\omega_{\mathrm{r}}=$ const. $\rightarrow \mathrm{T}_{\mathrm{m}}=\mathrm{T}_{\mathrm{f}}$
$0.344=6.08 \times 10^{-6 *} \omega_{\mathrm{r}}^{2} \rightarrow \omega_{\mathrm{r}}=237.86 \mathrm{rad} / \mathrm{s} \rightarrow \mathrm{n}=2271 \mathrm{rpm}$

$$
\begin{aligned}
& T_{m}-T_{f}=J \frac{d \omega_{r}}{d t} \\
& T_{m}-k_{f} \omega_{r}^{2}=J \frac{d \omega_{r}}{d t} \\
& \int d t=J \int \frac{d \omega_{r}}{T_{m}-k_{f} \omega_{r}^{2}}=\frac{J}{k_{f}} \int \frac{d \omega_{r}}{a^{2}-\omega_{r}^{2}} \text { where } a^{2}=\frac{T_{m}}{k_{f}} \\
& \frac{k_{f} t}{J}=\int \frac{d \omega_{r}}{a^{2}-\omega_{r}^{2}}=\frac{1}{2 a} \int \frac{1}{a+\omega_{r}}+\frac{1}{a-\omega_{r}} d \omega_{r} \\
& a=\sqrt{\frac{0.344}{6.08 \times 10^{-6}}} \\
& =237.86 \mathrm{rad} / \mathrm{s} \\
& =\frac{1}{2 a} \ln \left[\frac{a+\omega_{r}}{a-\omega_{r}}\right] \\
& =\frac{-1}{2 a} \ln \left[\frac{a-\omega_{r}}{a+\omega_{r}}\right] \\
& \Rightarrow \frac{a-\omega_{r}}{a+\omega_{r}}=e^{-\frac{2 a k_{f}}{J} t}=e^{-t / \tau}, \quad \tau=\frac{\tau}{2 a k_{f}}=6.915 \\
& a-\omega_{r}=\left(a+\omega_{r}\right) e^{-t / \tau} \\
& \omega_{r}\left(1+e^{-t / \tau}\right)=a\left(1-e^{-t / \tau}\right) \\
& \omega_{r}=\frac{a\left(1-e^{-t / \tau}\right)}{1+e^{-t / \tau}}=\frac{a e^{-t / 2 \tau}\left(e^{t / 2 \tau}-e^{-t / 2 \tau}\right)}{e^{-t / \tau \tau}\left(e^{t / 2 \tau}+e^{-t / 2 \tau}\right)}=a \tanh (t / 2 \tau) \\
& \Rightarrow \omega_{r}=237.86 \tanh (t / 13.83)
\end{aligned}
$$

(d)(iii)

$$
0.95 * 237.86=237.86 * \tanh (\mathrm{t} / 13.83) \rightarrow \mathrm{t}=13.83 * \tanh ^{-1}(0.95)=25.3 \mathrm{~s}
$$

Hall sensors provide speed/position feedback; sensor transitions are aligned with applied voltage transitions:

Sensored control is preferred when the drive is required to operate at low speeds and/or has many stop/starts, since back-emf zero-crossing detection is difficult in these cases.

QUESTION 2

(a)(i)

The restoring torque of the motor is:
$T_{m}=-\hat{T} \sin \left(N_{t} \theta\right) \quad$ where Nt is the number of rotor teeth and \hat{T} is the peak restoring torque.

For a purely inertial load, where the combined moment of inertia of the load and rotor is J , and ignoring damping, this torque can be equated with the inertial torque:

$$
T_{m}=-\hat{T} \sin \left(N_{t} \theta\right)=J \frac{d^{2} \theta}{d t^{2}}
$$

For small displacements about the equilibrium angular position of zero, $\sin (\mathrm{Nt} \theta)$ can be approximated as $\mathrm{Nt} \theta$ giving:

$$
-\frac{N_{t} \hat{T}}{J} \theta=\frac{d^{2} \theta}{d t^{2}}
$$

This is the differential equation for simple harmonic motion and the solution is a pure sinusoid with the natural frequency given by:

$$
\omega_{0}^{2}=\frac{N_{t} \hat{T}}{J} \rightarrow f_{0}=\frac{1}{2 \pi} \sqrt{\frac{N_{t} \hat{T}}{J}}
$$

(a)(ii)

Using equation in (a)(i), $\mathrm{f}_{0}=154 \mathrm{~Hz}$
Each excitation pulse rotates the rotor $1 / 200$ revolutions $\rightarrow 154 / 200=0.77 \mathrm{rps}=46.2 \mathrm{rpm}$
(a)(iii)

At this speed, the frequency of the stepping will excite the natural frequency of the motor/load, possibly resulting in increasingly large oscillations. This could then result in missed steps and loss of stability.

To avoid this problem: 1) accelerate through, minimising the time the motor operates at this speed, so that oscillations do not build up; 2) microstepping, instead of full-stepping, which results in a smoother torque at critical speeds ; 3) employ special couplings able to dissipate the energy, i.e., damping.
(a)(iv)

$\mathrm{I}=\sqrt{ } 2 * \mathrm{I}_{\text {rated }}=\sqrt{ } 2 \mathrm{~A}=1.414 \mathrm{~A}$
(a)(v)

Excitation sequence:

$$
A, A B, B, B \bar{A}, \bar{A}, \bar{A} \bar{B}, \bar{B}, \bar{B} A, A, A B \ldots
$$

$\mathrm{I}=\sqrt{ }(4 / 3) * \mathrm{I}_{\text {rated }}=1.115 \mathrm{~A}$
(b)(i)

$\delta=$ load angle, $\delta+\alpha=$ power factor angle, $\mathrm{E}=$ induced emf, $\mathrm{V}=$ voltage; note: resistance cannot be ignored like sinusoidal BLDCM

(b)(ii)

One complete period of phase excitation $=4$ rotor steps. 200 rotor steps per revolution, so $150 \mathrm{rpm}=$ $2.5 \mathrm{rps} \rightarrow \mathrm{f}_{\text {electrical }}=125 \mathrm{~Hz}$.
$2.5 \mathrm{rps}=5 \pi \mathrm{rad} / \mathrm{s}$, so $\mathrm{E}=\mathrm{k} \omega_{\mathrm{r}}=1.4 * 5 \pi=22 \mathrm{~V}$
$\mathbf{Z}=\mathrm{R}+\mathrm{j} \omega \mathrm{L}=1.6+\mathrm{j} 2 \pi^{*} 125^{*} 4.8 \times 10^{-3}=1.6+\mathrm{j} 3.77=4.1 \angle 67^{\circ}$
Power factor, $\cos \varphi=\cos (\delta+\alpha)=\cos \left(10^{\circ}+\alpha\right)=0.9$ lagging $\rightarrow 10^{\circ}+\alpha=25.84^{\circ} \rightarrow \alpha=15.84^{\circ}$
Assuming \mathbf{E} at angle of zero, $\mathbf{V}=\mathbf{E}+\mathbf{I}^{*} \mathbf{Z}=22+1 \angle-15.84^{\circ} * 4.1 \angle 67^{\circ}=26.1 \angle 51.16^{\circ}$
Input power, $\mathrm{P}_{\text {in }}=2 \mathrm{VI} \cos \varphi=2 * 26.1 * 1 * 0.9=47 \mathrm{~W}$
Power loss, $\mathrm{P}_{\text {loss }}=2 \mathrm{I}^{2} \mathrm{R}=2 * 1^{2 *} 1.6=3.2 \mathrm{~W}$
Output power, $\mathrm{P}_{\mathrm{out}}=\mathrm{P}_{\mathrm{in}}-\mathrm{P}_{\text {loss }}=47-3.2=43.8 \mathrm{~W}$
Torque $=\mathrm{P}_{\text {out }} / \omega_{\mathrm{s}}=43.8 / 5 \pi=2.79 \mathrm{Nm}$

Cribs.
Q ${ }^{3}$
(a) $m=\frac{48}{3 \times 2 \times 2}=4$

If not shat pitched:

It 2 slots shout pitched:

$$
\begin{aligned}
& \text { Bums }=\frac{\pi}{2 \sqrt{2}} \bar{B}=\frac{3.14}{2 \times 1.414} \times 1.1=1.22 \mathrm{~T} \\
& \left(\alpha=15^{\circ}, \beta=7.5^{\circ}\right) \\
& k_{\omega}=\frac{\sin (4 \times 2 \times 7.5 / 2)}{4 \cdot \sin \left(2 \cdot \frac{7.5}{2}\right)} \cdot \cos \left(\frac{2 \times 15}{2}\right) \\
& =\frac{0.5}{0.522} \times 0.966=0 . \mathrm{F}_{2} 5 \\
& N_{p h}=\frac{E_{\text {rms }}}{k k_{w} B_{m s}}=\frac{E_{\text {rms }} \cdot p}{l_{\omega d} \cdot k \omega \cdot B_{m s}}=\frac{69 \% / \sqrt{3} \times 2}{0.5 \times 50 \times 2 \overline{2} \times 0.3 \times 0.925 \times 1.22} \\
& =15.05 \text { (tums) } \\
& N_{\text {coil }}=\frac{N_{p h}^{4}}{m \cdot n_{p}}=\frac{15.05^{-}}{4 \times 2 \times 2}=0.94 \approx 1 \text { (fum) }
\end{aligned}
$$

(b)

$$
\begin{aligned}
& J=\left(\frac{2 \times 3}{d \pi} N_{p h} 6_{2 \omega} I_{p h}\right) \\
& I_{p h}=\frac{s}{3 . v p h}=\frac{13.6 \times 10^{3}}{663063}=11.38 \mathrm{~A} \\
& \bar{J}=\left(\frac{2 \times 3}{0.3 \times 3.14} \times 15.05 \times 0.975 \times 11.38\right)=1009 \mathrm{~A} / \mathrm{m}
\end{aligned}
$$

The speinfir alutir coding \bar{J} is 76 axid average cunt per meter of circumference of the air gap of the marline.

The specie magnetic loading \bar{B} is the rabid average flux density over the cylindriod surface of the air gop of thementin.
(C)

$$
\begin{aligned}
& \hat{B}_{z}=\left(1+\frac{w_{s}}{\omega_{t}}\right) \frac{\pi}{2} \bar{B} \\
& \frac{w_{s}}{\omega_{t}}=\frac{2}{\eta}\left(\frac{\hat{B}_{t}}{\bar{B}}\right)-1
\end{aligned}
$$

The maximum $\hat{B} t$ should be $2.2 T$.

$$
\frac{w_{s}}{w_{t}}=\frac{2}{\pi} \cdot 2-1=0.274
$$

It is not sensible to her $\omega_{s}=\omega_{t}$ otlenise the machine will here sotanation of the troth. To avid seturotion, the width of slot (us) shard be 0.274 or less than th width of tooth (wt).
(d)

$$
\begin{aligned}
\hat{B C} & =\frac{1}{2 y} \frac{\overline{a d}}{2 p} \bar{B} \\
y & =\frac{0.5-0.3}{2}=0.1 \mathrm{~m} \\
\hat{B C} & =\frac{1}{2 \times 0.1} \times \frac{3.14 \times 0.3}{2 \times 2} \times 1.1 \\
& =1.3 \mathrm{~T}
\end{aligned}
$$

The \hat{B}_{c} is considerably less than the seturvetion point. Theatre, the depth if th slot, i.e. the width of the yoke y can be redux nithat saturating the stator. The \hat{B}_{c} is indepultat to the \hat{B}_{t} so the increase of \hat{B}_{c} will not affect the \hat{B}. The incrence of slot area will give move space for conductors so th J can be ihoreased so does the power rating?.

Q4
(a)

$$
\text { (a) } \begin{aligned}
P_{\text {loss }} & =P_{\text {out }} \cdot \frac{1}{n} \cdot(1-n) \\
& =2 \times 10^{3} \times \frac{1}{0.9} \times(1-0.9) \\
& =222 \mathrm{w} \\
t=\frac{C}{\theta} & =\frac{(000}{2.5}=4005 \\
\theta=\frac{P_{\text {loss }}}{\theta} & \left(1-e^{-\frac{t}{\tau}}\right)=\frac{222}{2.5}\left(1-e^{-\frac{100}{4000}}\right)=19.64^{\circ} \mathrm{C}
\end{aligned}
$$

The touzerstine robe is $19.64^{\circ} \mathrm{C}$
(b) The ambiont tempentare is $40^{\circ} \mathrm{C}$. The notor is cobled to $50^{\circ} \mathrm{C}$. Therofre, the vootor is cosled to $10^{\circ} \mathrm{C}$ above the aubiout. $\theta_{0}=10^{\circ} \mathrm{C}$

$$
\begin{aligned}
\theta & =\theta_{0}+\left(\frac{P_{100}}{b_{2}}-\theta_{0}\right)\left(1-e^{-\frac{t}{\theta}}\right) \\
& =10+\left(\frac{222}{2.1}-10\right)\left(1-e^{-\frac{10}{40}}\right) \\
& =27.3^{\circ} \mathrm{C}
\end{aligned}
$$

Therfoe, the pale tapenthe of the unsor is

$$
\theta_{p k}=40+27.3=67.3^{\circ} \mathrm{C}
$$

V_{1} : singe phese stator coltge $I_{1:}$ stator cunt
$X_{m \text { m: }}$ mognetising reastane
X_{2}^{\prime} : refared notor reactone
R_{2}^{\prime} : retened wotor resittae
S : slip
$I_{i}^{\prime} f$: heffened rotor formed cut
İb: refened rotor beullued cunt.

Fomud slip

$$
S_{f}=\frac{w_{s}-q_{s}}{w_{s}}=s
$$

Benkmed 5 tip

$$
\begin{aligned}
S_{b} & =\frac{-w_{s}-w_{v}}{-w_{3}} \\
& =2-5
\end{aligned}
$$

W_{S} : syuchronas speed
ω_{r} : votor spued.
S : oveall $s \beta$

Wher stanting the single phese indation wachi, $w_{r}=0$ $S=1$. The avell torge is zevo. Aentne, the sirgle phere vachle is not able to stant itself becase the statrop torge is zeno.
(e) An addittlend cuindinry, colled stanter winding is requined. This stanter aninding needs to hae a spatiol 90° leading displarenot with respet to themain winding.and the cunt in this starter mindip needs to be 90° teadin? phese angle with reppet to the cunt at the main minding, in ouder to here the acxinum stanting torque.

Assessors' comments

Q1 Trapezoidal brushless DC motor: 37 attempts, mean 12.6/20
A very popular question, with lots of good attempts. The main issue in the early parts of the question was treating the measured open-circuit voltage as its phase rather than line value. This doubles the emf and torque constant, but the resulting errors were treated as consequential and were not penalised. Part (d) caused the greatest difficulty, and whilst most candidates were able to determine the final values of the drive torque and speed, no one successfully integrated the governing differential equation (although many were able to write it down, and get somewhere with solving it).

Q2 Stepper motor: 30 attempts, mean 14.2/20
Another popular question, attracting lots of very good answers. In part (a) the main problem was relating the rated current of the stepper motor to its peak current, and many candidates lost a few marks there. Part (b)(ii) caused the greatest difficulties, with very few candidates getting correct values for all quantities. The main cause was not relating speed to excitation frequency correctly.

Q3 Machine design: 16 attempts, mean 10.9/20
An unpopular question. The machine winding design has normally been unpopular in this module as it's relatively decoupling to the rest of the module. Candidates were able to sketch the coil arrangement and apply the winding factors. However, most of candidates struggled the number of turns per phase of Part (a). Candidates also struggled to fully apply the specific electric loading although most of candidate were able to write down the definition of the specific electric and magnetic loading. For Part (c), most f candidates understood the peak flux density occurs at the tooth. For Part (d), most of candidate have left this part empty, which could due to the time pressure.

Q4 Thermal modelling, duty cycles and single-phase induction motors: 34 attempts, mean 13.7/20
A popular question. Most of candidates have shown good understanding of the temperature of the motor when starting from the same as the ambient for Part (a). The loss calculation has some common errors on using the input power. For Part (b), most of candidates were able to call the right equation for the temperature when initial temperature is not same to the ambient. However, the absolute temperature of the motor needs to be added with the ambient temperature. Nearly all candidates have well answered the Part (c) of single phase induction machine equivalent circuit and terms and about two third candidates were able to sketch the torque speed characteristics correctly for Part (d). Most of candidates understood the capacitor needs to be used for increasing the torque of the single phase induction motor but only a few were able to sketch the equivalent circuit and phasor diagram of this Part (e).

