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EGT2
ENGINEERING TRIPOS PART IIA

Monday 24 April 2023 9.30 to 11.10

Module 3B5

SEMICONDUCTOR ENGINEERING

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Engineering Data Book
Attachment: Sheet of Formulae and Constants (2 pages)

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 (a) Consider a two-dimensional potential well with sides of length Lx and Ly.
The potential inside the well is given by V (x, y) = 0. Electrons of mass m exist within the
well.

(i) Show that ψ(x, y) = Ae( j(kx x+ky y)) is a valid solution to the time independent
Schrödinger equation and derive an expression relating the wavenumber k =√

k2
x + k2

y to the total energy of the electron, E . Plot the E–k energy band diagram
for the electrons. [15%]

(ii) The boundary conditions are chosen to beψ(x, y) = ψ(x+Lx, y) = ψ(x, y+Ly).
Derive expressions for the allowed values of kx and ky in terms of Lx and Ly. Explain
why boundary conditions such as these are appropriate for a free-electron model. [15%]

(iii) Within two-dimensional k-space, an infinitesimally thin annulus of thickness
dk positioned at a wavevector k contains an area Vk = 2πkdk, as shown in Fig. 1.
Show that the density of states gk (k)dk within an annulus of thickness dk is given
by

gk (k)dk =
Lx Lyk
π

dk .

[15%]

(iv) Find an expression for the density of states g(E)dE as a function of energy. [15%]

𝑘𝑦

𝑘𝑥

k Annulus area = 2𝜋𝑘 d𝑘
d𝑘

Fig. 1

(b) Consider a two-dimensional crystal with an internal periodic potential with a period
given by the atomic lattice spacing a in both x and y directions. The crystal has sides of
length Lx and Ly, where Lx, Ly � a.

(i) Letting ky = 0, sketch the E–kx energy band diagram according to the nearly-
free electron approximation for the first three Brillouin zones. [15%]
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(ii) Explain why it is conventional for a band diagram to show only the first
Brillouin zone. [10%]

(iii) For this crystal, the density of states in the conduction band is given by

g(E)dE =

{
0 E < EC

BLx LydE E ≥ EC
,

where EC is the energy at the conduction band minimum and B is a constant. Show
that if EC − EF � kBT , the free electron concentration, n, is given by

n = NC,2D exp
(

EF − EC
kBT

)
,

where NC,2D is the effective density of states in the conduction band and EF is the
Fermi level. Derive an expression for NC,2D. What are the units of measurement
for NC,2D? [15%]
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2 (a) InP is used as channelmaterial to fabricate aMetal-Semiconductor Field-Effect
Transistor (MESFET). InP has a band gap of 1.35 eV, an electron affinity of 4.38 eV, and
an effective density of states in the valence band of 1025 m−3. Assume room temperature
(300K) operation.

(i) A p-type doping density of NA = 1021 m−3 is desired. Give a suitable
element that can act as acceptor and indicate the substitutional lattice site it should
take. Calculate the shift in Fermi level this doping causes with respect to intrinsic
InP. State all assumptions made. [15%]

(ii) Assume ideal work functions Φ for the following metals: Φ(Au) = 5 eV,
Φ(Ti) = 4.3 eV, Φ(Pd) = 5.5 eV. Discuss which of these metals would be suitable to
form the MESFET gate with the p-doped InP. Sketch a band diagram of the resulting
unbiased Gate-Channel cross-section. [15%]

(iii) Explain how the same metal could be used to form Source and Drain contacts.
Sketch the MESFET device and graphically explain the term pinch-off voltage. [15%]

(iv) The drain-source current IDS is found to saturate without pinch-off of the
channel. Explain this behaviour. Sketch the output and transfer characteristics of
this MESFET. [20%]

(b) InGaAs can support very high electron mobilities and can be grown epitaxially on
InP support. For such a High-Electron-Mobility Transistor (HEMT) design an InAlAs
buffer layer is used, as shown in Fig. 2. The bandgap of InAlAs is 1.5 eV and that of
InGaAs is 0.8 eV. InAlAs/InGaAs form a type II heterojunction, with the conduction band
offset being approximately 2

3 of the band gap difference.

(i) Explain the advantage of transfer doping, i.e. why the InAlAs layer is doped
but not the InGaAs channel in this HEMT design. [10%]

(ii) Draw a band diagram of the heterojunction between the n-doped InAlAs and
InGaAs layer. Indicate where a so called two-dimensional electron gas (2-DEG) is
formed. Explain the meaning of this term and outline how this can lead to quantised
electron levels. Estimate the ground state energy of such a 2-DEG assuming its
width is 0.5 nm. [25%]
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Fig. 2

Page 5 of 10 (TURN OVER



Version SH/3

3 (a) An n-type Si sample is measured at 300K in a Hall effect set-up, as illustrated
in Fig. 3. The sample under test has thickness t, length l and width w. An electric field
Ex establishes a current of density Jx flowing in the positive x-direction. The magnetic
flux density Bz is applied in the positive z-direction. The Hall voltage VH is defined as
illustrated in Fig. 3. The sample has a donor density of ND = 4.5 × 1021 m−3. In Si at
300K, the effective mass of electrons is 0.36me, the bandgap is 1.12 eV and the intrinsic
carrier density is ni = 1.0 × 1016 m−3.

𝐽𝑥 𝐽𝑥

𝑥

𝑦

𝑧

𝐵𝑧

𝑉H
𝐸𝑥𝑤

𝑡

𝑙

Fig. 3

(i) Calculate the energy of the Fermi level, EF , with respect to the valence band
minimum, EV , in the n-type Si. State all assumptions made. [15%]

(ii) Calculate the mobility of electrons in the sample given that the magnitude
of the applied electric field is Ex = 0.64Vm−1 and the current density is
Jx = 40Am−2. Calculate the average time between electronic scattering events.
State all assumptions made. [20%]

(iii) Derive an expression for the magnitude of the Lorentz force experienced by
the electrons in terms of Jx and Bz. What is the polarity of the resulting Hall voltage
VH, considering its defined direction in Fig. 3 ? [15%]

(iv) The Hall coefficient is defined as

RH =
VH

wJx Bz
.

Find the relationship between theHall coefficient RH and the density of free electrons,
n. Calculate the Hall voltage if w = 1.0mm, the current density Jx = 40Am−2 and
the magnetic flux density Bz = 0.2 T. [15%]

(b) Fig. 4 shows an Arrhenius plot of the conductivity σ(T) of three different samples,
A, B and C, as a function of temperature, T . The conductivity is expressed as a ratio
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relative to the conductivity at 300K. Identify each material as insulator, semiconductor or
metal and sketch the corresponding band diagram for each material. Compare the sizes of
the bandgaps. Comment on the presence of dopants and the position of any dopant energy
levels relative to the bands. [20%]
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Fig. 4

(c) An electron and a photon have the same energy. At what value of this energy will
their respective wavelengths be equal? [15%]
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4 (a) Outline an experiment that allows the measurement of the diffusion coefficient
and lifetime of holes in a n-type semiconductor. [10%]

(b) A bar made of Si with a doping density of ND = 1022 m−3 has a length of 0.03m
and cross-sectional area of 5 × 10−6 m2. Fig. 5 shows the carrier mobilities in Si with
respect to total impurity concentration.

(i) Calculate the current for a voltage of 10V applied across the length of the bar.
[10%]

(ii) The Si bar is now continuously illuminated, which uniformly creates 1026

electron hole pairs per second per m−3. What is the new current at 10V bias,
assuming a life time of excess electrons and holes of 10−5 s ? State all assumptions
made. [15%]

Fig. 5

(c) The same n-doped Si is used to form the base region of a pnp Bipolar Junction
Transistor (BJT). The undepleted base width is 2 µm. Assume room temperature (300K)
operation and an intrinsic carrier concentration of 1.5 × 1016 m−3.

(i) Base transport is dominated by diffusion. Calculate the hole diffusion length
Lh in the base region and the transit time of holes across the base. [15%]
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(ii) Outline how amplification is achieved in such a BJT. Estimate the base-
to-collector current amplification factor β from the time characteristics of hole
transport. [15%]

(iii) A 0.5V forward bias is applied to the emitter-base junction. Calculate the
excess hole concentration injected into the base at the edge of the emitter depletion
region. State all assumptions made. [15%]

(iv) Sketch the distribution of excess holes across the base assuming that both the
emitter-base and base-collector junctions are forward biased. [10%]

(v) Outline what dictates the upper frequency limit of such BJT. How can this be
improved? [10%]

END OF PAPER
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Numerical Answers: 2(a)(i) 0.437 eV, (b)(ii) 0.3 eV; 3(a)(i) 0.71 eV, 
(a)(ii) 0.087 m2V-1s-1, 177 fs, (a)(iv) 11 μV, (c) 1.022 × 106 eV; 4(b)(i) 0.32 A, 
(b)(ii) 0.37 A, (c)(i) 1.3 × 10-3 m2s-1, 3 ns, (c)(ii) 3333, (c)(iii) 5.6 × 1018 m-3
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3B5 Semiconductor Engineering: Sheet of Formulae and Constants

Planck’s constant h = 6.626× 10−34 Js
Reduced Planck’s constant h̄ = h

2π = 1.055× 10−34 Js
Speed of light in a vacuum c = 2.998× 108 m/s
Mass of electron me = 9.109× 10−31 kg
Charge of electron −e = −1.602× 10−19 C
Permittivity of free space ε0 = 8.854× 10−12 C2/(Jm)
Boltzmann constant kB = 1.381× 10−23 J/K

de Broglie relation p =
h

λ

Planck’s equation E = h̄ω

Bragg’s law nλ = 2d sin θ

Heisenberg’s uncertainty principle ∆x∆p ≥ h̄

2

Time-dependent Schrödinger equation − h̄2

2m
∇2ψ(r, t)+V ψ(r, t) = jh̄

∂

∂t
ψ(r, t)

Time-independent Schrödinger equation − h̄2

2m
∇2Ψ(r)+VΨ(r) = EΨ(r)

Laplacian in Cartesian coordinates ∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

Laplacian in spherical polar coordinates ∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2

Density of states in three-dimensional free electron model g(E)dE =
V

2π2h̄3
(2m∗)

3
2E

1
2 dE

Fermi–Dirac function f(E) =
1

exp
(
E−EF

kBT

)
+ 1

Law of mass action np = n2i

1



Density of electrons in conduction band n = NC exp

(
−EC − EF

kBT

)

Density of holes in valence band p = NV exp

(
EV − EF
kBT

)

Current density J = σε

Conductivity σ = neµe+peµh

Mobility µ =
qτscatt
m∗

Continuity equation for electrons ∂(∆n)

∂t
= −∆n

τe
+µeε

∂(∆n)

∂x
+De

∂2(∆n)

∂x2

Continuity equation for holes ∂(∆p)

∂t
= −∆p

τh
−µhε

∂(∆p)

∂x
+Dh

∂2(∆p)

∂x2

Poisson equation ∇2V = − ρ

ε0εr

Einstein’s relation D = µ
kBT

e

Diffusion length L =
√
Dτ

Debye screening length LD =

√
ε0εrkBT

e2n0

2
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