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EGT2
ENGINEERING TRIPOS PART IIA

Thursday 27 April 2023 2 to 3.40

Module 3C5

DYNAMICS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated
in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed
Attachment: 3C5 Dynamics and 3C6 Vibration datasheet 2023 (7 pages).
Engineering Data Book

10 minutes reading time is allowed for this paper at the start of
the exam.
You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.

You may not remove any stationery from the Examination Room.
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1 A large cube of mass 8𝑚 and side 2𝑎 is assembled from two identical solid pieces,
Piece 1 and Piece 2, images of which are shown in Fig. 1. Piece 1 and Piece 2 are each
made up of four small cubes. The small cubes each have mass 𝑚 and side 𝑎 . An 𝑥, 𝑦, 𝑧
coordinate system with origin O is shown in the figure. The centres of the cubes of Piece 1
are at [𝑎/2, 𝑎/2,−𝑎/2],[𝑎/2,−𝑎/2,−𝑎/2], [−𝑎/2,−𝑎/2,−𝑎/2] and [−𝑎/2,−𝑎/2, 𝑎/2].
The centre of the assembled large cube is at O.

(a) The inertia matrix at O for Piece 1 is

𝑘


∗ ∗ ∗
∗ ∗ ∗
3 ∗ 16

 .
Find, in terms of 𝑚 and 𝑎, the value of 𝑘 and find the missing entries marked ∗. [50%]

(b) Find the inertia matrix at O for Piece 2. [20%]

(c) By adding the inertia matrices for Piece 1 and Piece 2, find the inertia matrix at O
for the large cube, and verify your result. [20%]

(d) Find the moment of inertia of the large cube about its body diagonal. [10%]
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Fig. 1
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2 A uniform thin circular disc of mass 𝑚 and radius 𝑎 is spinning about its symmetry
axis k with angular velocity 𝜔 as shown in Fig. 2. The centre of the spinning disc is at
rest, floating in free space. A small impulse 𝐼 aligned parallel to k is delivered to the edge
of the disc. The disc begins to wobble (free nutation) such that k traces out a cone with
cone half angle \, where \ is small.

(a) Use the Gyroscope Equations on the Data Sheet to determine the wobbling frequency
of the free-spinning disc. [30%]

(b) Show that the angular velocity of the disc may be described by two orthogonal
components whose magnitudes are 𝜔1 ≈ 2𝜔\ and 𝜔3 = 𝜔. Hence determine the wobble
angle \ in terms of the applied impulse 𝐼. [40%]

(c) The kinetic energy of the disc has increased on account of the impulse. Show that
the increase of kinetic energy associated with translation of the disc is

𝐼2

2𝑚

and find the increase of kinetic energy associated with wobbling. [30%]
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3 (a) Derive from first principles (i.e. beginning from 𝑄 = ¤ℎ) :

(i) Euler’s equations for motion of a rigid body ; [25%]

(ii) the Gyroscope Equations for the motion of an axisymmetric "AAC" body [25%]

as given in Section 1.3 of the Datasheet.

(b) A planar mechanism comprises four identical rigid right-triangular plates ABC,
CDE, EGH and HJA connected together with frictionless pivots at A, C, E and H as
shown in Fig. 3. The side lengths of each of the plates are 𝑎, 𝑎 and

√
2𝑎. Points A and E

are constrained to move horizontally. The mechanism has two degrees of freedom using
generalized coordinates 𝑥 and \ shown in the figure. A horizontal force 𝐹 acts at D and a
moment 𝑀 acts at G. Find the generalized forces 𝑄𝑥 and 𝑄\ for the mechanism. [50%]
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Fig. 3
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4 A uniform beam AB of mass𝑚 and length 2𝑎 is supported at A and B by two springs
of stiffness 𝑘 as shown in Fig. 4. Motion is described by small displacements 𝑥 and 𝑦 of
points A and B respectively. Gravity can be neglected. An alternative set of coordinates
𝑧 and \ describe the translation and the rotation of the beam at its centre.

(a) Using the 𝑥, 𝑦 coordinate system:

(i) find expressions for the kinetic energy and the potential energy;

(ii) find the mass matrix M and stiffness matrix K;

(iii) find the generalized momenta 𝑝𝑥 and 𝑝𝑦;

(iv) show that the Hamiltonian is 2
𝑚 (𝑝2

𝑥 + 𝑝2
𝑦 − 𝑝𝑥 𝑝𝑦) + 𝑘

2 (𝑥
2 + 𝑦2);

(v) Use Hamilton’s equations to find four equations of motion in 𝑥 and 𝑦. [50%]

Note from the Data Sheet the special case when the kinetic energy is expressible using a
mass matrix 𝑴:

𝑇 =
1
2
¤𝒒𝑇𝑴 ¤𝒒 =

1
2
𝒑𝑇𝑴−1 𝒑 and 𝐻 = 𝑇 +𝑉

(b) In order to find the Kamiltonian using coordinates 𝑧 and \ a canonical transformation
of Type 2 is defined as

𝐺2(𝒒, 𝑷, 𝑡) = 𝑃𝑧
𝑥 + 𝑦

2
+ 𝑃\

𝑦 − 𝑥
2𝑎

.

(i) Use the Type 2 second equation (as on the Data Sheet table of Canonical
Transforms) to verify that 𝑄𝑧 = 𝑧 and 𝑄\ = \;

(ii) Use the Type 2 first equation to find expressions for 𝑝𝑥 and 𝑝𝑦 in terms of 𝑃𝑧
and 𝑃\ .

(iii) Find the Kamiltonian 𝐾 (𝑃𝑧, 𝑃\ , 𝑧, \);

(iv) Use Hamilton’s equations to find four equations of motion in 𝑧 and \. [50%]
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5 Answers:

(a) Q1

(𝑎) 𝑚𝑎2

6


16 −3 3
−3 16 0
3 0 16

 (𝑏) 𝑚𝑎2

6


16 3 −3
3 16 0
−3 0 16

 (𝑐) 16𝑚𝑎2

3
(𝑑) 16𝑚𝑎2

3
.

(b) Q2

(𝑎) 2𝜔 (𝑏) 2𝐼
𝑚𝑎𝜔

(𝑐) 2𝐼2

𝑚
.

(c) Q3

(𝑏) 𝑄𝑥 = 𝐹 𝑄\ = 𝑀 + 𝐹𝑎
√

2
2

(cos \ − 3 sin \).

(d) Q4

(𝑎) 𝑇 =
𝑚

6
( ¤𝑥2 + ¤𝑦2 + ¤𝑥 ¤𝑦) 𝑴 =

𝑚

6

[
2 1
1 2

]
𝑉 =

𝑘

2
(𝑥2 + 𝑦2) 𝑲 =

[
𝑘 0
0 𝑘

]
𝑝𝑥 =

1
3
𝑚 ¤𝑥 + 1

6
𝑚 ¤𝑦 𝑝𝑦 =

1
3
𝑚 ¤𝑦 + 1

6
𝑚 ¤𝑥

¤𝑥 = 4𝑝𝑥
𝑚

−
2𝑝𝑦
𝑚

¤𝑦 =
4𝑝𝑦
𝑚

− 2𝑝𝑥
𝑚

¤𝑝𝑥 = −𝑘𝑥 ¤𝑝𝑦 = −𝑘𝑦

(𝑏) 𝑝𝑥 =
1
2
𝑃𝑧−

1
2𝑎
𝑃\ 𝑝𝑦 =

1
2
𝑃𝑧+

1
2𝑎
𝑃\ 𝐾 =

1
2𝑚

(𝑃2
𝑧+

3
𝑎2𝑃

2
\)+𝑘 (𝑧

2+(𝑎\)2)

¤𝑧 = 𝑃𝑧

𝑚
¤\ = 3𝑃\

𝑚𝑎2
¤𝑃𝑧 = −2𝑘𝑧 ¤𝑃\ = −2𝑘𝑎2\

END OF PAPER
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