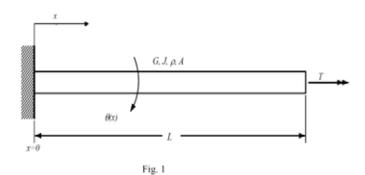
A shaft of length L, cross-sectional area A and polar moment of area J is made of a material with density ρ and shear modulus G, as illustrated in Fig. 1. One end of the shaft is prevented from rotating (at x = 0) and the other end is free (at x = L). The shaft can undergo small amplitude torsional oscillations.



(a) Write down the appropriate boundary conditions at each end and find expressions for the mode shapes $u_n(x)$ and natural frequencies ω_n . [20%

$$BC's: \chi=0, \quad \partial(0,t)=0$$
 — O
 $\chi=L, \quad GJ\Theta'(L,t)=0.$ — O

mode shapes: wave equation solutions sinusoidal here
$$u_n(x) = A_n \cos k_n x + G_n \sin k_n x$$
.

$$\begin{array}{ll}
1 = 3 & A_n = 0. \\
2 = 3 & U_n'(x) = B_n k_n \cos k_n x
\end{aligned}$$

$$\begin{array}{ll}
B_n k_n \cos k_n L = 0 \\
\cos k_n L = 0.
\end{aligned}$$

$$\begin{array}{ll}
k_n L = (n - \frac{1}{2}) \pi
\end{aligned}$$

Giving:
$$u_n(\alpha) = \beta_n \sin \frac{(n-\frac{1}{2})\pi x}{L}$$

for
$$\omega_n$$
 need relationship with k_n .

we expeation: $\omega_n = C_p k_n = \int_{-p_n}^{p_p} f_p k_n$.

hence $\omega_n = \frac{(n-h_n)\pi}{2} \int_{-p_n}^{p_p} f_p f_p$

Question 1 (continued)

- (b) A torque T is applied at the free end, x = L.
 - (i) Derive an expression for the transfer function $H_1(L, x, \omega)$ from T to the output angular displacement θ at an arbitrary position x. Your answer should be expressed as a summation and should be in terms of the properties of the shaft. [2]

$$H_{i}(L,x,\omega) = \sum_{n} \frac{U_{n}(x)U_{n}(L)}{U_{n}^{2}-\omega^{2}}$$

mass nomalise mode stage: Un = Brainking

$$\int u_n^2(x) dx = 1$$

$$e^{\int \int_{2}^{2} L} = 1$$
 \Rightarrow $\int_{n} = \sqrt{\frac{2}{e^{\int L}}}$

$$U_{n}(x) = \sqrt{\frac{2}{\rho T}} \sin k_{n}x,$$

$$U_{n}(x) = \sqrt{\frac{2}{\rho T}} \sin k_{n}x = \sqrt{\frac{2}{\rho T}} \sin (n-k_{n})\pi = (-1)^{n+1}\sqrt{\frac{2}{\rho T}}$$

$$U_{n}(x) = \sqrt{\frac{2}{\rho T}} \sin k_{n}x = \sqrt{\frac{2}{\rho T}} \sin (n-k_{n})\pi = (-1)^{n+1}\sqrt{\frac{2}{\rho T}}$$

50
$$H_1(L, x, D) = \frac{2}{e^{\int L}} \sum_{aMn} \frac{\sin k_n x \cdot \sin k_n L}{U_n^2 - U^2}$$
 or $\frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$

$$\left(\begin{array}{c} \omega \text{ here } k_n = (n - \frac{1}{2}) \pi \\ 2 \end{array} \right)$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

$$= \frac{2}{e^{\int L}} \sum_{aMn} \frac{(-1)^{n+1} \sin k_n x}{U_n^2 - U^2}$$

(ii) By appropriately differentiating your answer to (b)(i) or otherwise, derive an expression for the transfer function $H_2(L, 0, \omega)$ from T to the reaction torque at the boundary x = 0. [20%]

$$H_{1}(L, x, \omega) = \frac{\partial(x)}{T(L)}$$

$$T = G + \partial',$$

$$T(L) = \frac{G + \partial'(x)}{T(L)}$$

$$= G + \frac{\partial H_{1}(L, x, \omega)}{\partial x}$$

$$U_{n}(x) = \int_{e^{T}}^{2} \sin k_{n}x$$

$$U_{n}'(x) = \int_{e^{T}}^{2} k_{n} \cos k_{n}x. \qquad u_{n}'(0) \qquad \text{sink}L$$

$$So \quad H_{2}(L, 0, \omega) = \frac{2}{e^{T}} \cdot G + \int_{a}^{2} \frac{k_{n} \cdot (-1)^{n}}{u^{n}} dx$$

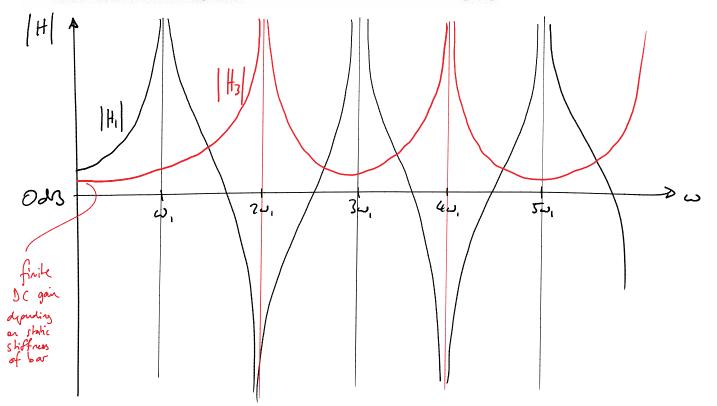
(iii) Find the transfer function $H_3(L, 0, \omega)$ from input angular displacement at x = L to reaction torque at x = 0 in terms of $H_1(L, L, \omega)$ and $H_2(L, 0, \omega)$, noting that H_1 is evaluated at the output position x = L. [10%]

$$H_{1}(L,L,\omega) = \frac{\Theta(L)}{T(L)}, \quad H_{1}(L,0,\omega) = \frac{T(0)}{T(L)}$$

$$M_{1}(L,0,\omega) = \frac{T(0)}{P(L)} = \frac{T(0)}{T(L)} = \frac{T(L)}{P(L)}$$

$$= \frac{H_{1}(L,0,\omega)}{H_{1}(L,L,\omega)}$$

(iv) Sketch the transfer functions $H_1(L, L, \omega)$ and $H_2(L, \theta, \omega)$, labelling both resonant and anti-resonant frequencies. [30%]



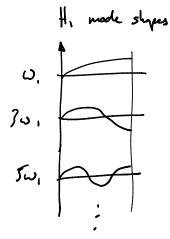
Notes:

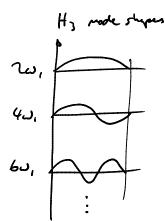
H resonances @ W, , Ju, , Ju, . & Driving point response so antiresonance between each penk.

H2 resonances also @ W1, JW1, SW, (for TF expression in (W(ii)). No arbitesonance as sign of numeral surps for each peak.

H₃ = H₂/H₁. So peaks at anhiresonance of H₁. Peaks in H₂ & H₁ will enced. This can be observe formally by approximality the single term near a given peak.

Albruhin pespective: Hy resources as per fixed-fixed torsiand wording, so first made @ 2w, 4 regular spacing.





Question 1 (continued)

Analytic derivation (additional note)
$$O(x,t) = U(x) e^{ixt}$$

$$S(t) = 0 \quad O(0,t) = 0 \quad O(t,t) = 0 \quad e^{ixt}$$

$$U(x) = A_{xi} + S_{xi} + S_$$

here
$$U(x) = \frac{\partial_L}{subl} \cdot subx$$
.

want lorgue output at x=0, T=6JO,

So
$$T(0) = G J O'(0) = G J O_{1}$$
. k as h o
$$= \frac{G J h O_{1}}{\sin h l}$$

herce
$$H_2 = T(0) = \frac{GJk}{sikl} = \frac{GJV_c}{sikl} \propto \frac{1}{sikl}$$

which with give some shetch above

- A beam of length L and uniform cross-section with second moment of area I, is made of material with density ρ and Young's modulus E. The beam is clamped at both ends and undergoes small-amplitude transverse vibration.
- (a) Starting from the governing equation for transverse vibration of a beam, derive an expression whose solutions give the wavenumbers k_n for the modes of the beam. [20%]

from datasheet:
$$e + i - E = 0$$

let $y = U(x) e^{i\omega t}$
 $\Rightarrow PDE = 0$
 $+ e + \omega^2 U + E = 0$
 $U'' + \omega^2 e / e = 0$
 $W'' + \omega^2 e / e = 0$

Solution:

$$U = D_1 \sin kx + D_2 \cos kx + D_3 \sinh kx + D_4 \cosh kx$$
 $U' = k \left(D_1 \cos kx - D_2 \sin kx + D_3 \cosh kx + D_4 \sinh kx \right)$
 $U'' = k^2 \left(-D_1 \sin kx - D_2 \cosh kx + D_3 \sinh kx + D_4 \cosh kx \right)$
 $U''' = k^2 \left(-D_1 \cos kx + D_2 \sinh kx + D_3 \cosh kx + D_4 \sinh kx \right)$
 $U'''' = k^2 \left(-D_1 \cos kx + D_2 \sinh kx + D_3 \cosh kx + D_4 \sinh kx \right)$

$$BC(s) : Q = 0, L, W = u' = 0.$$

$$x=0$$
, $u=0=1$ $D_2+D_4=0$ $\Longrightarrow D_2=-D_4$
 $u'=0=1$ $D_1+D_3=0$ $\Longrightarrow D_1=-D_3$

$$\chi = L$$
, $U = 0 \Rightarrow \begin{cases} sinkl-sinkl & coskl-coskle \\ 0 \end{cases}$

$$U' = 0 \Rightarrow \begin{cases} coskl-ashle & -sinkl-sinkl \end{cases}$$

natural modes when dot = 0:

Question 2 (continued)

$$-\left(\operatorname{sinkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coskL}-\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}\right)^{2}=0$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}-\operatorname{coshkL}\right)^{2}=0$$

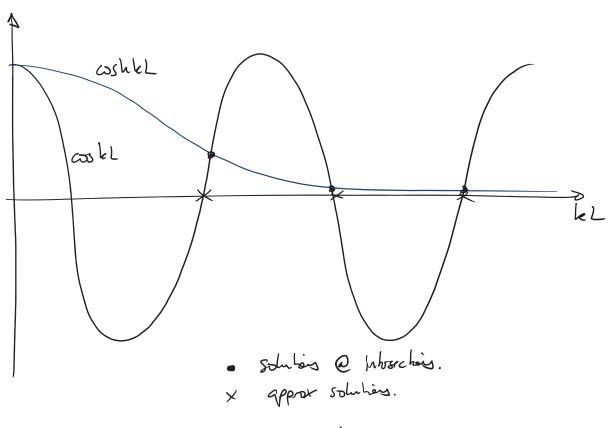
$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}-\operatorname{coshkL}\right)$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}-\operatorname{coshkL}\right)$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}-\operatorname{coshkL}\right)$$

$$\operatorname{sinhkL+sinhkL}\right)\left(\operatorname{sinhkL}-\operatorname{sinhkL}\right)-\left(\operatorname{coshkL}-\operatorname{coshkL}\right)$$

(b) Using a graphical construction, estimate the first six natural frequency ratios of the beam, i.e. estimate ω_n/ω_1 for $1 \le n \le 6$. [20%]



approx:
$$k_n L = (n + \frac{1}{n})_{TT}$$
 (in proves with inexasing n).

$$k_{n}L \sim (n+\frac{1}{2})_{m} = \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}...$$

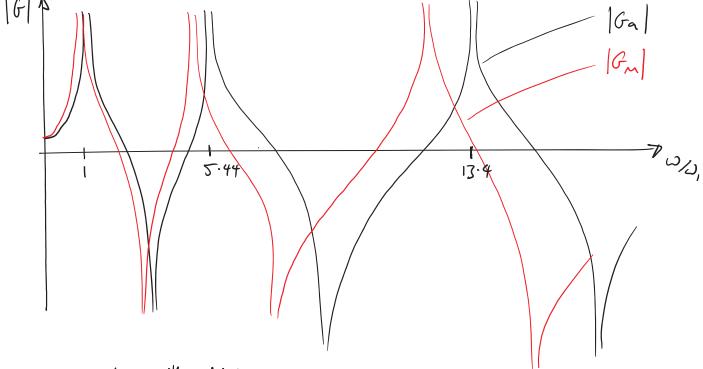
$$k^{4} = \omega^{2} \left(\frac{e^{4}}{e^{4}}\right)$$

$$\omega_{n} = k_{n}^{2} \sqrt{\frac{eT}{e^{4}}}, \quad \omega_{n} \propto k_{n}^{2}...$$

$$\omega_{n} \propto 3^{2}, \quad 5^{2}, 7^{2}, 9^{2}, 11^{2}, 13^{2}...$$

$$\frac{\omega_{n}}{\omega_{n}} = 1, \quad 2.78, \quad 5.44, \quad 9, 13.4, 18.8$$

- (c) A measurement is carried out to find the driving point transfer function at the centre of the beam G_a . An instrumented hammer is used to strike the beam at the centre, and the response is measured using an accelerometer mounted at the centre. The accelerometer has a small but non-zero mass m, resulting in a measured transfer function G_m .
 - (i) Sketch the driving point transfer functions G_m and G_a , i.e. both with and without including the effect of the added mass of the accelerometer. Include in your sketch frequencies up to and including ω_6 . [20%]

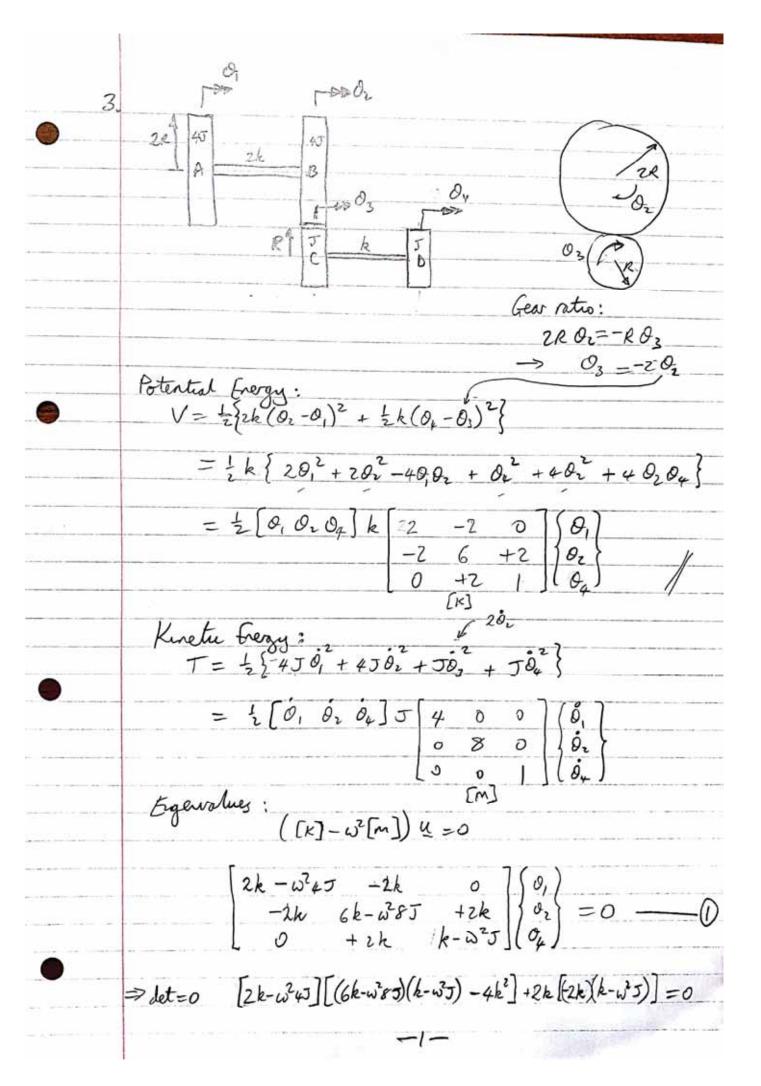


- · We low with added may
- . Snall charge @ bow Fig, lazo charge @ high begreny
- only symmetic modes visible.

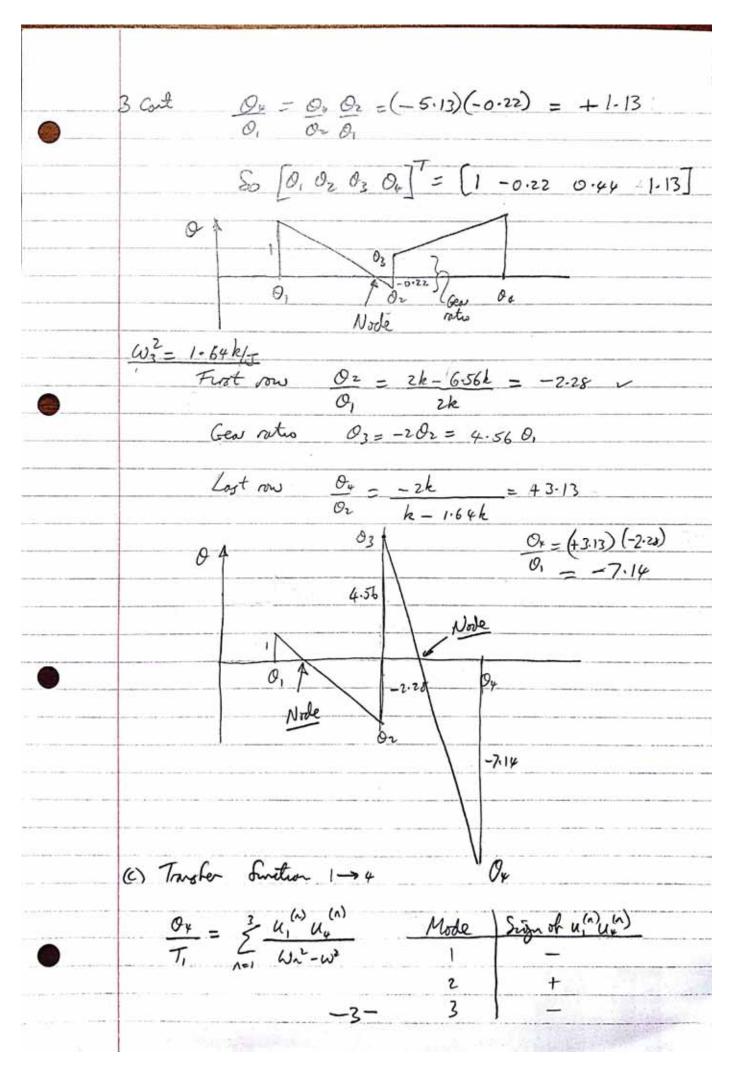
(ii) By considering the coupled driving point transfer function at the accelerometer, derive an expression to calculate the actual transfer function G_a (without the mass) from the measured transfer function G_m (with the mass). [30%]

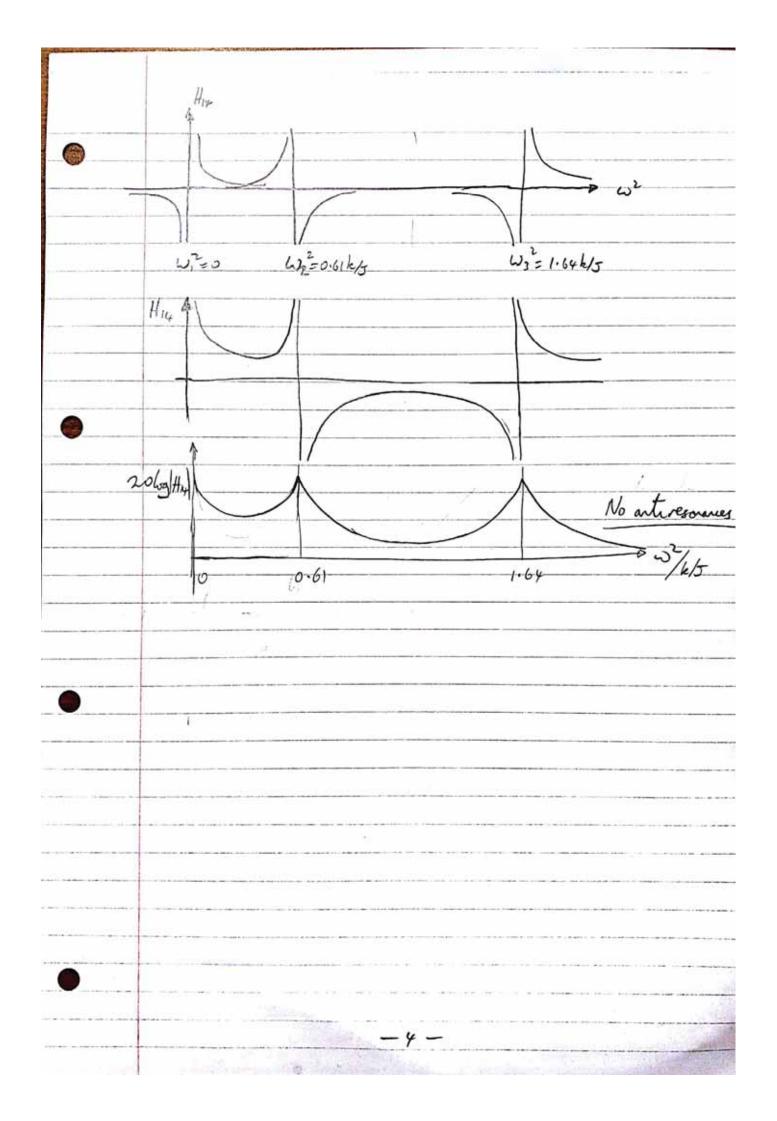
Gorphed =
$$G_{m} = \left(\frac{1}{G_{a}} + \frac{1}{G_{mass}}\right)^{-1}$$
 $F_{mass} = \frac{-1}{mv^{2}}$
 $F_{mass} = \frac{-1}{mv^{2}}$

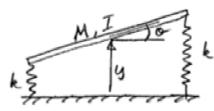
(iii) Under what conditions will the mass-compensated estimate be best and why? [10%]



	3 cont (2h-w245) (2k2-18k5w2 + 8w452) - 4k2(k-w25)=0
	4/23 - 28 /2 Jy + 16 W /6 J2 - 8 /2 Jy + 56 J2 W W - 32 W x 53 - 4/23 + 4/3 /2 J = 6 0 250
	$= h^2 J \left(-28 - 8 + 44\right) + \omega^2 k J^2 \left(16 + 56\right) - 32 \omega^4 J^3$
	$32J^3 \omega^4 - 72 k J^2 \omega^2 + 32 k^2 J = 0$
	$ie 4\omega^4 - 9\left(\frac{k}{J}\right)\omega^2 + 4\left(\frac{k}{J}\right)^2 = 0$
•	$\omega^2 = 9 \left(\frac{1}{5} \right) \pm \frac{k}{5} \left[8i - 64 \right] = \frac{k}{5} \left[\frac{9 \pm \sqrt{11}}{8} \right]$
	Δ
	$ie \ \omega^2 = 0, \ 0.61 \frac{k}{J}, \ 1.64 \frac{k}{J}$
	Mode Shapes
	Mode 1 is a rigid body mode with $\omega_{i}^{2}=0$ The mode shape is $[0, 0_{2}, 0_{4}]^{T}=[1, 1-2]$
	10.
•	Gran news
	O ₁ O ₃ George O ₄
	Modes 283: First row of () (2k-w245)0, -2kOz=0 Last row of () 2k Oz +(k-w25)04=0
	7
	first row; $(2k-2.44 \text{ k } \omega^2)\theta$, $-2k\theta_2=0 \Rightarrow \theta_2=-0.22$
	Gen entro 03 = -2 02 = 0.440,
•	
	Lost ow: 2k Oz + (k-0.61k)04 =0 => 04 = -5.13
	-2-
	U. T. I. T.







(1) Symmetrie node: 0=0 "bounce" zek wi= zk/m

(ii) Anti-symmetric mode: y=0 "pitch" $EM_4: 2\left(\frac{1}{2}\right)k\left(\frac{1}{2}\theta\right) = I_6\ddot{\theta}$ with $I_6 = \frac{1}{12}ML^2$ $EM_4: 2\left(\frac{1}{2}\right)k\left(\frac{1}{2}\theta\right) = I_6\ddot{\theta}$

 $\Rightarrow k \vee 0 = M \vee 0 \Rightarrow \omega_2^2 = \frac{6k}{M}$

(b) With a small added mass (Except is reasonable to assure that the mode shapes don't change significant from the modes in Part (a). .. Use these modes in Rayleigh's quotient.

 $\frac{PE}{y+\xi\theta} V = \frac{1}{2}k[(y+\xi\theta)^{2}+(y-\chi\theta)^{2}]$ $y+\xi\theta \qquad \frac{KE}{\xi} T = \frac{1}{2}M\dot{y}^{2}+\frac{1}{2}I_{z}\dot{\theta}^{2} + \frac{1}{2}I_{z}\dot{\theta}^{2} + \frac{1}{2}(EM)(\dot{y}-(\chi-x)\dot{\theta})^{2}$

ξ-x

Mode (1) with
$$\theta = 0$$
:
$$\omega_1^2 \approx \frac{V_{max}}{T^+} = \frac{\frac{1}{2}k\left[y^2 + y^2\right]}{\frac{1}{2}M\left[y^2 + \xi(y^2)\right]} = \frac{k}{M} \frac{2}{(1+\xi)}$$

Mode (11) with y=0:

$$w_{2}^{2} \approx \frac{2k \left[\frac{L_{4}^{2} o^{2} + \frac{L_{4}^{2} o^{2}}{2} \right]}{\frac{1}{2} \left(\frac{1}{12} m L^{2} \right) \left[o^{2} \right] + \frac{1}{2} E m \left(\frac{L}{2} - x \right)^{2} o^{2}} = \frac{k}{m} \frac{L_{12}^{2} L^{2} + E \left(\frac{L}{2} - x \right)}{\frac{1}{12} L^{2} + E \left(\frac{L}{2} - x \right)^{2}}$$

$$= k/m \cdot \frac{1}{\frac{1}{6} + 2E \left(\frac{1}{2} - x/E \right)^{2}} \approx \frac{6k}{m} - \frac{2k}{m} E \left(\frac{1}{2} - x/E \right)^{2}$$
(upone binomial expansion) of the shift due to Em

- 4(c) Shift in lower mode is independent of x, so the size of the difference in frequency between the two modes depends only on the value of Wi.
- (1) Largest differe y when we is highest, which happens when x=42 is additional mass is in the middle. In this case we is uncharged from the value in part (a)
- (11) The smallest difference is when w_z^2 is lowest, which happens shen x=0 or x=c. At these positions the pitch moment of writing of the system is largest. w_z^2

