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 ENGINEERING TRIPOS PART IIA 

______________________________________________________________________ 

 

Friday 28 April 2023        9.30 to 11.10 

______________________________________________________________________ 

 

 

 Module 3C6 

 

VIBRATION 

 

 Answer not more than three questions. 

 All questions carry the same number of marks. 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed 

Attachment: 3C5 Dynamics and 3C6 Vibration data sheet 2023 (7 pages). 

Engineering Data Book. 

 

 

10 minutes reading time is allowed for this paper at the start of 

the exam. 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 

You may not remove any stationery from the Examination Room. 
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1 A uniform ‘free-free’ shaft of circular cross section has polar moment of area J1 

and is made of a material with density ρ and shear modulus G. The axial distance along 

the shaft is x. It is driven by a harmonically varying torque about the shaft axis ��0, �� � ��	
�� at one end ( � 0) and is free at the other ( � �). 

(a) (i) Find the natural frequencies and mode shapes for free vibration of the shaft. [10%] 

 (ii) Find a summation expression for the transfer function ��0, �, �� from input 

torque at  � 0 to output angular displacement at  � �, where � is an arbitrary 

distance along the shaft. [20%] 

(b) A second circular shaft, made of the same material, is connected to the first at  � 0 as illustrated in Fig. 1. The second shaft has length L and polar moment of area �� � 2��. 

 (i) Show that the driving point transfer function �� of the coupled shafts at the 

connection point is proportional to �� ≡ ��0,0, ��, i.e. show that �� � ���, and 

find the constant of proportionality λ. [10%] 

 (ii) By considering ��  and the conditions at the connection point, sketch the 

first four mode shapes of the coupled system and find the corresponding natural 

frequencies. [40%] 

 (iii) Find the reflection coefficient R at  � 0 for a wave travelling in the positive  direction. Comment on the strength of coupling of the shafts. [20%] 

 
Fig. 1 
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2 A beam of length L, uniform cross-section of area A and second moment of area I 

is made from a material with density ρ and Young’s modulus E. The beam undergoes 

small-amplitude transverse vibration ��, ��. 

(a) The beam is pinned at one end ( � 0) and is free at the other ( � �). 

 (i) Starting from the governing equation for transverse vibration of a beam, 

derive an expression whose solutions give the wavenumbers �� for the modes of 

the beam.  [20%] 

 (ii) Find expressions for the mode shapes ���� in terms of �� and L and sketch 

the first four mode shapes. [20%] 

(b) A constant horizontal force is applied to the free end of the beam so that it has a 

tension P, as illustrated in Fig. 2. The governing equation for free vibration of a beam 

under tension P is given by: 

�� ������  !" �#��# $ % ����� � 0 

 (i) Find expressions for the phase velocity &' and the group velocity &( of the 

tensioned beam as a function of wavenumber k. [20%] 

 (ii) Use Rayleigh’s principle to estimate the natural frequency ��)  of the first 

bending mode of the beam under tension. Use ���� � sin�3.9266  �⁄ � as an 

approximation to the mode shape. Write your answer in the form ��) � ���1  ∆�, 

where �� is the frequency of the first bending mode without tension and ∆ is to be 

found. You may use the result that the potential energy of a beam under tension is 

given by   

4 � 12 !" 5 6�����7� 8  12 % 5 9���:� 8 

    [30%] 

 (iii) What do you expect will happen to the mode shapes and natural frequencies 

if the tension P is high? [10%] 

 

   
Fig. 2 
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3 Figure 3 shows a simplified two-dimensional model of the vertical vibration of a 

building with 2 floors.  The floors are assumed to be rigid beams of mass  m  and length  

l,  connected by linear springs of stiffness  k,  representing the vertical stiffnesses of the 

walls.  The floors are constrained to move vertically and the displacements of the ends of 

the floors are  z1  to  z4 as shown. 

(a) Assuming small motions, write down expressions for the kinetic and potential 

energies  T  and  V  in terms of the coordinates  z1 to z4.  Hence or otherwise write down 

the mass matrix and show that the stiffness matrix can be written as: 

;<= � � > 2 0 $1 00 2 0 $1$1 0 1 00 $1 0 1 ? 

where the vector of generalised coordinates is  ;@� @� @A @#=B . [30%] 

(b) The system has two natural modes with eigenvectors of the form  ;1 1 C C=B .  

By substituting these mode shapes into the eigenvalue calculation, or otherwise, 

determine the value of  α  and determine the natural frequencies.  Sketch all four mode 

shapes.   [40%] 

(c) Assuming that the modes are lightly damped, sketch a log amplitude plot and a 

phase plot for the transfer function describing the vertical displacement  zB  of point B on 

the upper floor when a sinusoidal force  fA  is applied to point A on the lower floor, as 

shown in the figure, where A and B are in the right half of the beams. [20%] 

(d) Sketch a polar plot (ie Imaginary part vs Real part) of the transfer function in 

part (c), in the vicinity of the mode with the lowest natural frequency. Show salient 

values.     [10%] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (cont. 
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Fig.  3 
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4. Five heavy lorries of mass  m  are connected together to form a ‘platoon’ as shown 

in Fig. 4.  Each lorry has a sensor to measure the distance to the vehicle in front and a 

proportional feedback control system that maintains a near constant spacing (or 

‘headway’) between the vehicles.  For considering the ‘string stability’ of the platoon, 

each headway can be modelled as a linear spring and the steady-state velocity of the 

platoon can be neglected.  Four of the headway ‘springs’ have stiffness k and one has 

stiffness S.  The longitudinal positions of the vehicles are defined by the vector of small 

displacements from their nominal positions ;� � A # D=B. 

(a) Write expressions for the kinetic and potential energies of the system. [10%] 

(b) Using the results from part (a), write an expression for Rayleigh’s quotient.  Show 

that the quotient gives the correct natural frequency for the rigid body mode. [10%] 

(c) For the case where  S = k,  the mode with the smallest non-zero natural frequency 

has the form  ;1 C 0 $C $1=B.  By differentiating Rayleigh’s quotient, find the 

natural frequency.  Sketch the corresponding mode shape.  Discuss and sketch any other 

modes found by this analysis. [40%] 

(d) Sketch the remaining mode shapes and indicate whether their corresponding 

natural frequencies are higher or lower than the frequencies you found in Part (c). [20%] 

(d) If the stiffness of spring  S  is increased by 10%,  (S = 1.1k), estimate the percentage 

change in the smallest non-zero natural frequency. [20%] 

 

 

 
 

 

 

Fig.  4 
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Part IIA Data Sheet

Module 3C5 Dynamics
Module 3C6 Vibration

1 Dynamics in three dimensions

1.1 Axes fixed in direction

(a) Linear momentum for a general collection of particles mi:

dp

dt
= F (e)

where p = MvG, M is the total mass, vG is the velocity of the centre of mass and F (e) the
total external force applied to the system.

(b) Moment of momentum about a general point P

Q(e) = (rG − rP)× ṗ+ ḣG

= ḣP + ṙP × p

where Q(e) is the total moment of external forces about P. Here hP and hG are the moments
of momentum about P and G respectively, so that for example

hP =
∑
i

(ri − rP)×miṙi

= hG + (rG − rP)× p

where the summation is over all the mass particles making up the system.

(c) For a rigid body rotating with angular velocity ω about a fixed point P at the origin of
coordinates

hP =

∫
r × (ω × r)dm = Iω

where the integral is taken over the volume of the body, and where

I =

 A −F −E
−F B −D
−E −D C

 , ω =

ωxωy
ωz

 , r =

xy
z


and A =

∫
(y2 + z2)dm B =

∫
(z2 + x2)dm C =

∫
(x2 + y2)dm

D =
∫
yz dm E =

∫
zx dm F =

∫
xy dm

where all integrals are taken over the volume of the body.
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1.2 Axes rotating with angular velocity Ω

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for example

ṗ+Ω × p = F (e)

where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1.1(b) above, it is usually easiest
to calculate velocity components directly in the required directions of the axes. Application of
the general formula needs an extra term unless the origin of the frame is fixed.

1.3 Euler’s dynamic equations (governing the angular motion of a
rigid body)

(a) Body-fixed reference frame:

Aω̇1 − (B − C)ω2ω3 = Q1

Bω̇2 − (C − A)ω3ω1 = Q2

Cω̇3 − (A−B)ω1ω2 = Q3

where A, B and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the principal axes of
inertia of the body at P.

(b) Non-body-fixed reference frame for axisymmetric bodies (the“Gyroscope equations”):

AΩ̇1 − (AΩ3 − Cω3)Ω2 = Q1

AΩ̇2 + (AΩ3 − Cω3)Ω1 = Q2

Cω̇3 = Q3

where A, A and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes such that ω3 and Q3 are aligned
with the symmetry axis of the body. The reference frame (not fixed in the body) rotates with
angular velocity Ω = [Ω1, Ω2, Ω3] with Ω1 = ω1 and Ω2 = ω2.

1.4 Lagrange’s equations

For a holonomic system with generalised coordinates qi

d

dt

[∂T
∂q̇i

]
− ∂T

∂qi
+
∂V

∂qi
= Qi

where T is the total kinetic energy, V is the total potential energy and Qi are the non-
conservative generalised forces.
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1.5 Hamilton’s equations

(a) Basic formulation

The generalised momenta pi and the Hamiltonian H(p, q) are defined as

pi =
∂T

∂q̇i
, H(p, q) =

∑
i

piq̇i − T + V

where it should be noted that in the expression for the Hamiltonian the velocities q̇i(p, q) must
be expressed as a function of the generalised momenta and the generalised displacements.

Hamilton’s equations are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+Qi.

Special case when the kinetic energy is expressible using a mass matrix M :

T =
1

2
q̇TMq̇ =

1

2
pTM−1p and H = T + V

(b) Extension topics

The total time derivative of some function f(p, q, t) can be expressed in terms of the Poisson
bracket {f,H} in the form

df

dt
=
∂f

∂t
+ {f,H}, {f,H} ≡

∑
i

[
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

]
.

Common forms of Canonical Transform for Hamilton’s equations are:

Type Generating function 1st eqn 2nd eqn Kamiltonian

1 G1(q,Q, t) p =
∂G1

∂q
P = −∂G1

∂Q
K = H +

∂G1

∂t

2 G2(q,P , t) p =
∂G2

∂q
Q =

∂G2

∂P
K = H +

∂G2

∂t

3 G3(p,Q, t) q = −∂G3

∂p
P = −∂G3

∂Q
K = H +

∂G3

∂t

4 G4(p,P , t) q = −∂G4

∂p
Q =

∂G4

∂P
K = H +

∂G4

∂t

3C5 / 3C6 data sheet 2023 Page 3



2 Vibration modes and response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 3 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 3 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 3) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)T Mu(k) =

{
0 j 6= k
1 j = k

u(j)T Ku(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k

6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑
j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑
j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.
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7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑
n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑
n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑
n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑
n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.

10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑
n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑
n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).
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11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑
n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑
n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

2.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 3.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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3 Governing equations for continuous systems

3.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

3.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

3.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

3.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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