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 ENGINEERING TRIPOS PART IIA 

______________________________________________________________________ 

 

Monday 29 April 2024         9.30 to 11.10 

______________________________________________________________________ 

 

 

 Module 3C6 

 

VIBRATION 

 

 Answer not more than three questions. 

 All questions carry the same number of marks. 

 The approximate percentage of marks allocated to each part of a question is 

indicated in the right margin. 

 Write your candidate number not your name on the cover sheet. 

 

STATIONERY REQUIREMENTS 

Single-sided script paper 

 

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM 

CUED approved calculator allowed. 

Attachment: 3C5 Dynamics and 3C6 Vibration data sheet 2023 (7 pages). 

Engineering Data Book. 

 

 

10 minutes reading time is allowed for this paper at the start of 

the exam. 

You may not start to read the questions printed on the subsequent 

pages of this question paper until instructed to do so. 

You may not remove any stationery from the Examination Room. 
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1 (a) A string of length 𝐿 has tension 𝑃 and mass per unit length 𝑚. The distance 

along the string is 𝑥, and the small amplitude transverse deflection of the string is denoted 

𝑧𝑠(𝑥, 𝑡). The string is fixed at 𝑥 = 0 and free at 𝑥 = 𝐿. 

 (i) Find the natural frequencies 𝜔𝑛 and mode shapes 𝑢𝑛(𝑥) for free vibration of 

the string.  [10%] 

 (ii) Find an expression for transfer function 𝐺𝑠(𝑥1, 𝑥2, 𝜔) of the string from an 

input force applied at 𝑥 = 𝑥1 to an output displacement measured at 𝑥 = 𝑥2, using 

a modal summation. [10%] 

(b) For axial vibration of a uniform fixed-free bar, find an expression for the transfer 

function 𝐺𝑏(𝑦1, 𝑦2, 𝜔) from an input axial force applied at 𝑦 = 𝑦1 to an output axial 

displacement at 𝑦 = 𝑦2, using a modal summation. The distance along the bar is 𝑦 and 

the axial displacement of the bar is 𝑧𝑏(𝑦, 𝑡). Take the fixed end of the bar to be at        

𝑦 = 0 and assume that the bar has Young’s modulus 𝐸, density 𝜌, cross-sectional area 𝐴, 

and length 𝐿.  [20%] 

(c) Under what conditions are the driving point transfer functions of the two systems 

at their free ends identical, i.e. when is 𝐺𝑠(𝐿, 𝐿, 𝜔) = 𝐺𝑏(𝐿, 𝐿, 𝜔)? Write your answer as 

one or more expressions that relate the properties of the string and the 

bar.    [20%] 

(d) The string and bar are coupled as shown in Fig. 1. Assume that the tension in the 

string does not cause any bending in the bar. For the case when the uncoupled transfer 

functions are identical, i.e. 𝐺𝑠(𝐿, 𝐿, 𝜔) = 𝐺𝑏(𝐿, 𝐿, 𝜔): 

 (i) Find the driving point transfer function for the coupled system at the coupling 

point (𝑥 = 𝑦 = 𝐿). [10%] 

 (ii) Sketch the first four mode shapes of the coupled system and list their natural 

frequencies. For each mode shape, use a pair of plots to show the string and bar 

displacements separately. [30%] 

 

 

 

 

 

     (cont. 
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Fig. 1 
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2 A beam of length 𝐿, uniform cross-section of area 𝐴 and second moment of area 𝐼 

is made from a material with density 𝜌 and Young’s modulus 𝐸. The distance from one 

end of the beam is 𝑥, and the small amplitude transverse deflection of the beam is 𝑦. The 

beam is pinned at both ends. 

(a) Starting from the governing equation for transverse vibration of a beam, derive an 

expression for the natural frequencies 𝜔𝑛 and mode shapes 𝑢𝑛(𝑥) of the beam. [20%] 

(b) A mass 𝑀 is attached to the beam at 𝑥 = 𝑥0 via a light rigid link of length 𝑑 as 

shown in Fig. 2. The link and beam are rigidly connected such that they remain at right 

angles to each other. 

 (i) Using suitable assumptions, apply Rayleigh’s principle to find an 

approximate expression for the new natural frequencies 𝜔𝑛
′  of the modified beam. 

Write your answer in the form 𝜔𝑛
′ = 𝜔𝑛(1 + ∆) and find ∆. [50%] 

 (ii) For the case when 𝑀 → ∞, 𝑑 = 0 and 𝑥0 = 𝐿 2⁄ , sketch the first four mode 

shapes and, without further calculation, comment on the natural frequency of each 

mode.  [30%] 

 

 

 

 

Fig. 2 
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3 Figure 3 shows a two-dimensional model of a system with three masses m that are 

constrained to move vertically with displacements 𝑧1, 𝑧2 and 𝑧3  and a uniform rigid beam 

of mass 3m and moment of inertia ma2 about its centre of mass, which can move vertically 

with displacement y and rotate with angle .  The masses and beam are connected by 

linear springs of stiffness k.  The spacing between the masses is a and the spacing between 

the support springs is 2a. 

(a) Assuming small motions, write down expressions for the kinetic and potential 

energies of the system T and V and show that the stiffness matrix can be written: 

𝑘

[
 
 
 
 

1 0 0 −1 𝑎
0 1 0 −1 0
0 0 1 −1 −𝑎

−1 −1 −1 5 0
𝑎 0 −𝑎 0 4𝑎2]

 
 
 
 

 

where the generalized coordinate vector is [𝑧1 𝑧2 𝑧3 𝑦    𝜃]𝑇. [30%] 

(b) The system has two natural modes with mode shapes of the form 

[1 1 1 𝛽    0]𝑇, where  is an unknown constant.  By substituting this mode shape 

into the eigenvalue calculation, or by considering a simpler 2-mass system, or otherwise, 

determine the value of  and determine the two corresponding natural frequencies. [20%] 

(c) Three of the mode shapes have 𝑦 = 0.  Sketch these modes and put all of the modes 

in order of increasing natural frequency. [30%] 

(d) Assuming that the modes are lightly damped, sketch a log amplitude plot for a 

transfer function describing the vertical displacement 𝑧1 for a sinusoidal vertical force f 

applied to the mass with coordinate 𝑧3. [20%] 
 

 

Fig.  3 
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4 Torsional vibration of an engine is represented by the model shown in Fig. 4.  Five 

discs, each with polar moment of inertia  J  are connected by shaft sections, three of which 

have torsional stiffness k and one of which has torsional stiffness S.  The assembly is 

supported by frictionless bearings.  The angular positions of the discs are defined by the 

coordinate vector [𝜃1  𝜃2  𝜃3  𝜃4  𝜃5]
T. 

 (a) Write expressions for the kinetic and potential energies of the system. [20%] 

 (b) Using the results from (a), write an expression for Rayleigh’s quotient.  Show 

that the quotient gives the correct natural frequency for the rigid body mode of vibration.

    [20%] 

 (c) For the case when S = k, the mode with the smallest non-zero natural 

frequency has the form  [1 𝛼 0    −𝛼 −1]T.  By minimising Rayleigh’s quotient, 

find the natural frequency and the corresponding mode shape.  Comment on any other 

modes found by this analysis. [30%] 

 (d) If the stiffness of shaft S is increased by 10%, (i.e. 𝑆 = 1.1𝑘), estimate the 

percentage change in the smallest non-zero natural frequency. [30%] 

 

  

J J J J J 

k k k S 

     

1 2 3 4 5 

 
 

 

Fig.  4 

 

 

 

 

END OF PAPER 



Part IIA Data Sheet

Module 3C5 Dynamics
Module 3C6 Vibration

1 Dynamics in three dimensions

1.1 Axes fixed in direction

(a) Linear momentum for a general collection of particles mi:

dp

dt
= F (e)

where p = MvG, M is the total mass, vG is the velocity of the centre of mass and F (e) the
total external force applied to the system.

(b) Moment of momentum about a general point P

Q(e) = (rG − rP)× ṗ+ ḣG

= ḣP + ṙP × p

where Q(e) is the total moment of external forces about P. Here hP and hG are the moments
of momentum about P and G respectively, so that for example

hP =
∑
i

(ri − rP)×miṙi

= hG + (rG − rP)× p

where the summation is over all the mass particles making up the system.

(c) For a rigid body rotating with angular velocity ω about a fixed point P at the origin of
coordinates

hP =

∫
r × (ω × r)dm = Iω

where the integral is taken over the volume of the body, and where

I =

 A −F −E
−F B −D
−E −D C

 , ω =

ωxωy
ωz

 , r =

xy
z


and A =

∫
(y2 + z2)dm B =

∫
(z2 + x2)dm C =

∫
(x2 + y2)dm

D =
∫
yz dm E =

∫
zx dm F =

∫
xy dm

where all integrals are taken over the volume of the body.
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1.2 Axes rotating with angular velocity Ω

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for example

ṗ+Ω × p = F (e)

where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1.1(b) above, it is usually easiest
to calculate velocity components directly in the required directions of the axes. Application of
the general formula needs an extra term unless the origin of the frame is fixed.

1.3 Euler’s dynamic equations (governing the angular motion of a
rigid body)

(a) Body-fixed reference frame:

Aω̇1 − (B − C)ω2ω3 = Q1

Bω̇2 − (C − A)ω3ω1 = Q2

Cω̇3 − (A−B)ω1ω2 = Q3

where A, B and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the principal axes of
inertia of the body at P.

(b) Non-body-fixed reference frame for axisymmetric bodies (the“Gyroscope equations”):

AΩ̇1 − (AΩ3 − Cω3)Ω2 = Q1

AΩ̇2 + (AΩ3 − Cω3)Ω1 = Q2

Cω̇3 = Q3

where A, A and C are the principal moments of inertia about P which is either at a fixed point
or at the centre of mass. The angular velocity of the body is ω = [ω1, ω2, ω3] and the moment
about P of external forces is Q = [Q1, Q2, Q3] using axes such that ω3 and Q3 are aligned
with the symmetry axis of the body. The reference frame (not fixed in the body) rotates with
angular velocity Ω = [Ω1, Ω2, Ω3] with Ω1 = ω1 and Ω2 = ω2.

1.4 Lagrange’s equations

For a holonomic system with generalised coordinates qi

d

dt

[∂T
∂q̇i

]
− ∂T

∂qi
+
∂V

∂qi
= Qi

where T is the total kinetic energy, V is the total potential energy and Qi are the non-
conservative generalised forces.
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1.5 Hamilton’s equations

(a) Basic formulation

The generalised momenta pi and the Hamiltonian H(p, q) are defined as

pi =
∂T

∂q̇i
, H(p, q) =

∑
i

piq̇i − T + V

where it should be noted that in the expression for the Hamiltonian the velocities q̇i(p, q) must
be expressed as a function of the generalised momenta and the generalised displacements.

Hamilton’s equations are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
+Qi.

Special case when the kinetic energy is expressible using a mass matrix M :

T =
1

2
q̇TMq̇ =

1

2
pTM−1p and H = T + V

(b) Extension topics

The total time derivative of some function f(p, q, t) can be expressed in terms of the Poisson
bracket {f,H} in the form

df

dt
=
∂f

∂t
+ {f,H}, {f,H} ≡

∑
i

[
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

]
.

Common forms of Canonical Transform for Hamilton’s equations are:

Type Generating function 1st eqn 2nd eqn Kamiltonian

1 G1(q,Q, t) p =
∂G1

∂q
P = −∂G1

∂Q
K = H +

∂G1

∂t

2 G2(q,P , t) p =
∂G2

∂q
Q =

∂G2

∂P
K = H +

∂G2

∂t

3 G3(p,Q, t) q = −∂G3

∂p
P = −∂G3

∂Q
K = H +

∂G3

∂t

4 G4(p,P , t) q = −∂G4

∂p
Q =

∂G4

∂P
K = H +

∂G4

∂t
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2 Vibration modes and response

Discrete Systems Continuous Systems

1. Equation of motion
The forced vibration of an N -degree-of-freedom
system with mass matrix M and stiffness ma-
trix K (both symmetric and positive definite)
is governed by:

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see Section 3 for examples.

Mÿ + Ky = f
where y is the vector of generalised displace-
ments and f is the vector of generalised forces.

2. Kinetic Energy

T =
1

2
ẏTMẏ T =

1

2

∫
ẏ2dm

where the integral is with respect to mass (sim-
ilar to moments and products of inertia).

3. Potential Energy

V =
1

2
yTKy See Section 3 for examples.

4. Natural frequencies and mode shapes
The natural frequencies ωn and corresponding
mode shape vectors u(n) satisfy

Ku(n) = ω2
nMu(n)

The natural frequencies ωn and mode shapes
un(x) are found by solving the appropriate dif-
ferential equation (see Section 3) and bound-
ary conditions, assuming harmonic time depen-
dence.

5. Orthogonality and normalisation

u(j)T Mu(k) =

{
0 j 6= k
1 j = k

u(j)T Ku(k) =

{
0 j 6= k
ω2
j j = k

∫
uj(x)uk(x)dm =

{
0 j 6= k
1 j = k

6. General response
The general response of the system can be writ-
ten as a sum of modal responses:

The general response of the system can be writ-
ten as a sum of modal responses:

y(t) =
N∑
j=1

qj(t)u
(j) = Uq(t) y(x, t) =

∑
j

qj(t)uj(x)

where U is a matrix whose N columns are
the normalised eigenvectors u(j) and qj can be
thought of as the ‘quantity’ of the jth mode.

where y(x, t) is the displacement and qj can be
thought of as the ‘quantity’ of the jth mode.
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7. Modal coordinates
Modal coordinates q satisfy: Each modal amplitude qj(t) satisfies:

q̈ +
[
diag(ω2

j )
]
q = Q q̈j + ω2

j qj = Qj

where y = Uq and the modal force vector
Q = UT f .

where Qj =
∫
f(x, t)uj(x)dm and f(x, t) is the

external applied force distribution.

8. Frequency response function
For input generalised force fj at frequency ω
and measured generalised displacement yk, the
transfer function is

For force F at frequency ω applied at point x1,
and displacement y measured at point x2, the
transfer function is

H(j, k, ω) =
yk
fj

=

N∑
n=1

u
(n)
j u

(n)
k

ω2
n − ω2

H(x1, x2, ω) =
y

F
=
∑
n

un(x1)un(x2)

ω2
n − ω2

(with no damping), or (with no damping), or

H(j, k, ω) =
yk
fj
≈

N∑
n=1

u
(n)
j u

(n)
k

ω2
n + 2iωωnζn − ω2

H(x1, x2, ω) =
y

F
≈
∑
n

un(x1)un(x2)

ω2
n + 2iωωnζn − ω2

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

(with small damping), where the damping fac-
tor ζn is as in the Mechanics Data Book for
one-degree-of-freedom systems.

9. Pattern of antiresonances
For a system with well-separated resonances
(low modal overlap), if the factor u

(n)
j u

(n)
k has

the same sign for two adjacent resonances then
the transfer function will have an antiresonance
between the two peaks. If it has opposite sign,
there will be no antiresonance.

For a system with well-separated resonances
(low modal overlap), if the factor un(x1)un(x2)
has the same sign for two adjacent resonances
then the transfer function will have an antireso-
nance between the two peaks. If it has opposite
sign, there will be no anti-resonance.

10. Impulse responses
For a unit impulsive generalised force fj = δ(t),
the measured response yk is given by

For a unit impulse applied at t = 0 at point x1,
the response at point x2 is

g(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ωn
sinωnt g(x1, x2, t) =

∑
n

un(x1)un(x2)

ωn
sinωnt

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

g(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ωn
e−ωnζnt sinωnt g(x1, x2, t) ≈

∑
n

un(x1)un(x2)

ωn
e−ωnζnt sinωnt

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).
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11. Step response
For a unit step generalised force fj applied at
t = 0, the measured response yk is given by

For a unit step force applied at t = 0 at point
x1, the response at point x2 is

h(j, k, t) = yk(t) =

N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−cosωnt

] h(x1, x2, t) =
∑
n

un(x1)un(x2)

ω2
n

[
1−cosωnt

]

for t ≥ 0 (with no damping), or for t ≥ 0 (with no damping), or

h(j, k, t) ≈
N∑
n=1

u
(n)
j u

(n)
k

ω2
n

[
1−e−ωnζnt cosωnt

] h(x1, x2, t) ≈
∑
n

un(x1)un(x2)

ω2
n

[
1−e−ωnζnt cosωnt

]

for t ≥ 0 (with small damping). for t ≥ 0 (with small damping).

2.1 Rayleigh’s principle for small vibrations

The “Rayleigh quotient” for a discrete system is

V

T̃
=

yTKy

yTMy

where y is the vector of generalised coordinates (and yT is its transpose), M is the mass matrix
and K is the stiffness matrix. The equivalent quantity for a continuous system is defined using
the energy expressions in Section 3.

If this quantity is evaluated with any vector y, the result will be
(1) ≥ the smallest squared natural frequency;
(2) ≤ the largest squared natural frequency;
(3) a good approximation to ω2

k if y is an approximation to u(k).

Formally
V

T̃
is stationary near each mode.
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3 Governing equations for continuous systems

3.1 Transverse vibration of a stretched string

Tension P , mass per unit length m, transverse displacement y(x, t), applied lateral force f(x, t)
per unit length.

Equation of motion Potential energy Kinetic energy

m
∂2y

∂t2
− P ∂

2y

∂x2
= f(x, t) V =

1

2
P

∫ (∂y
∂x

)2
dx T =

1

2
m

∫ (∂y
∂t

)2
dx

3.2 Torsional vibration of a circular shaft

Shear modulus G, density ρ, external radius a, internal radius b if shaft is hollow, angular
displacement θ(x, t), applied torque τ(x, t) per unit length. The polar moment of area is given
by J = (π/2)

(
a4 − b4

)
.

Equation of motion Potential energy Kinetic energy

ρJ
∂2θ

∂t2
−GJ ∂

2θ

∂x2
= τ(x, t) V =

1

2
GJ

∫ (∂θ
∂x

)2
dx T =

1

2
ρJ

∫ (∂θ
∂t

)2
dx

3.3 Axial vibration of a rod or column

Young’s modulus E, density ρ, cross-sectional area A, axial displacement y(x, t), applied axial
force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
− EA∂

2y

∂x2
= f(x, t) V =

1

2
EA

∫ (∂y
∂x

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

3.4 Bending vibration of an Euler beam

Young’s modulus E, density ρ, cross-sectional area A, second moment of area of cross-section
I, transverse displacement y(x, t), applied transverse force f(x, t) per unit length.

Equation of motion Potential energy Kinetic energy

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= f(x, t) V =

1

2
EI

∫ (∂2y
∂x2

)2
dx T =

1

2
ρA

∫ (∂y
∂t

)2
dx

Note that values of I can be found in the Mechanics Data Book.

The first non-zero solutions for the following equations have been obtained numerically and are
provided as follows:

cosα coshα + 1 = 0, α1 = 1.8751
cosα coshα− 1 = 0, α1 = 4.7300
tanα− tanhα = 0, α1 = 3.9266
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