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EGT2
ENGINEERING TRIPOS PART IIA

Thursday 24 April 2014 9.30to 11

Module 3C6

VIBRATION

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Write your candidate number not your name on the cover sheet.

STATIONERY REQUIREMENTS
Single-sided script paper

SPECIAL REQUIREMENTS TO BE SUPPLIED FOR THIS EXAM
CUED approved calculator allowed

Attachment: 3C5 Dynamics and 3C6 Vibration data sheet (6 pages).
Engineering Data Book

You may not start to read the questions printed on the subsequent
pages of this question paper until instructed to do so.
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| (a) A stretched string with tension P and mass per unit length m can undergo
small transverse vibration with displacement w(x,?), where x is distance along the string

and f is time. A point mass M is attached to the string at the point x = ga. Show that the

condition
9%w aw aw
el R e R~
o~ _, Xlx=a+r ¥ lx=qa-
must be satisfied, and give the second boundary condition that applies at x = a. [10%]

(b) A stretched string as in part (a) has length 2L, and the mass M is attached at its
mid-point. The two ends of the string are fixed to rigid supports. Use the governing
equation from the Data Sheet together with the various boundary conditions to show that
the natural frequencies w of symmetric modes of the weighted string satisfy the

equation
tankL = %
where k= w~/m/ P .
What equation determines the natural frequencies of antisymmetric modes? [40%]

(¢) Use a graphical approach to show the behaviour of the solutions of the equations
found in part (b). Discuss the limiting cases of very small and very large M. [25%]

(d) For the case when M is very small, explain how Rayleigh’s principle can be used
to estimate the effect of M on the lowest natural frequency of the string without the
added mass. Using the energy expressions given in the Data Sheet, obtain an expression
for this Rayleigh estimate. [25%]
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2 (a) A beam with a uniform rectangular cross-section is freely pinned to a rigid
support at one end, at position x = 0, and is free at the other end x = L. The width of the
beam is b and the thickness 4, and it is made of material with Young’s modulus £ and
density po. The beam undergoes small-amplitude bending vibrations. Derive an

expression whose roots give the natural frequencies. [35%]

(b) Give a graphical construction to estimate the roots of this equation, and hence
give approximate expressions for the natural frequencies. Sketch carefully the first
three mode shapes. [30%]

(c¢) Based on the approximate results from part (b), express the second and third non-
zero mode frequencies in terms of musical semitones relative to the first non-zero
frequency. [15%]

(d) The pinned-free beam from part (a) now hangs freely under gravity. Without
calculations, describe carefully what qualitative difference(s) the presence of gravity
will make to the governing equation, to the mode shapes and to the natural frequencies.

[20%)]
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3 A simple model of axial vibration of a tapered column consists of four masses

connected by four springs as shown in Fig. 1. The masses can move only in the axial
direction, with small displacements y;, y»,y3, Y4 as shown.

(a) Write down expressions for the potential and kinetic energy of this system. Ignore
gravity. [20%]

(b) Calculate the sfafic responses of this system to (i) an axial load applied to the
mass m, disregarding the effects of gravity; and (ii) the self-weight of the four masses. [40%)]

(c) Use these two static responses with Rayleigh’s principle to obtain approximations
to the lowest natural frequency of vibration of the system. Explain which of the two
estimates is the more accurate and comment on why this might be so. [40%)]
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4 A farmer builds a fence by nailing wooden beams to posts that are embedded in
the ground. In plan view, the fence can be idealized as shown in Fig. 2. The fence can
be idealized as four uniform, rigid beams of length L and mass m connected with

frictionless pin joints at the posts. The posts have lateral stiffness k4 and the system has
no damping. Use the lateral displacements of the posts y,, v, ...y, as coordinates.

(a) Write an expression for the kinetic energy of lateral vibration. Hence show that
the mass matrix for small vibration of the system can be written in the form:

[A
B

w O W
W O W
w O W
o b

[25%]

Determine 4, B, and C.

(b) Without calculations, sketch approximately the natural mode shapes for small
vibration in order of increasing frequency. Comment on the qualitative features you
incorporate in these sketches. [25%]

(¢c) On a dB scale, sketch the vibration transfer function for displacement of post y,
due to a sinusoidal force f = F'sin(at) applied to the middle post. Label salient features

of your sketch. [20%]

(d) For the particular case of the anti-symmetric modes of the fence, show how the
problem can be reduced to one with two degrees of freedom, and hence find an
expression for the natural frequencies of the anti-symmetric modes. [30%]
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Part ITA Data sheet
Module 3C5 Dynamics
Module 3C6 Vibration

DYNAMICS IN THREE DIMENSIONS

Axes fixed in direction

(a) Linear momentum for a general collection of particles m; :

(b)

()

ap _
dt = F©

where p = M vg, M is the total mass, v is the velocity of the centre of mass and F(®) the
total external force applied to the system.
Moment of momentum about a general point P
Q© =(rg-rp)xp +hg
= h p+ r PXp
where Q(©) is the total moment of external forces about P. Here, hp and hg are the
moments of momentum about P and G respectively, so that for example

hp = Y(r,-rp)xmFi
i

=hg+(rg—rp) xp
where the summation is over all the mass particles making up the system.

For a rigid body rotating with angular velocity w about a fixed point P at the origin of
coordinates

hp = frx(coxr)a’m: lw

where the integral is taken over the volume of the body, and where

A -F -E Wy X
I = -F B -D s w = CUy s r=1\Yy s
E-D C o, z
and A = [(2 + 2)dm B = [(22 + x2)dm C = [(x2 + y2)dm
szyzdm E=fzxdm F-—-fxya’m

where all integrals are taken over the volume of the body.

Axes rotating with angular velocity £2

Time derivatives of vectors must be replaced by the “rotating frame” form, so that for
example

p+82xp=F©
where the time derivative is evaluated in the moving reference frame.

When the rate of change of the position vector r is needed, as in 1(b) above, it is usually
easiest to calculate velocity components directly in the required directions of the axes.
Application of the general formula needs an extra term unless the origin of the frame is
fixed.
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Euler’s dynamic equations (governing the angular motion of a rigid body)

(a) Body-fixed reference frame:

Aw1-B-Cwmawz = Q)

Bwz—-(C-A)ws o = O

Cw3—(A-B)wy ap = Q3
where A, B and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = [wy, wp, ws] and
the moment about P of external forces is Q = [Q1, Q2, Q3] using axes aligned with the
principal axes of inertia of the body at P.

(b) Non-body-fixed reference frame for axisymmetric bodies (the "Gyroscope equations"):
AQI-(AK-Cw3) 2 = Q1
AQ:+(AB-Cawn) 2 = Qs
Cws = Q3
where A, A and C are the principal moments of inertia about P which is either at a fixed
point or at the centre of mass. The angular velocity of the body is @ = | w1, w2, w3] and
the moment about P of external forces is Q =[Q1, Q2, Q3] using axes such that w3
and Q3 are aligned with the symmetry axis of the body. The reference frame (not fixed
in the body) rotates with angular velocity £ =[£2y, &%, £3] with £21=w; and £H=w;.

Lagrange’s equations

For a holonomic system with generalised coordinates g;

- + —_ .
dqi - 9qi Qi

dafor] ar v
dt | dgi

where T is the total kinetic energy, V is the total potential energy, and (j; are the non-
conservative generalised forces.
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VIBRATION MODES AND RESPONSE

Discrete systems

1. The forced vibration of an N-degree-of-
freedom system with mass matrix M and
stiffness matrix K (both symmetric and
positive definite) is

My+Ky=f
where y is the vector of generalised

displacements and £ is the vector of
generalised forces.

2. Kinetic energy

| PR
T'=—y M
s 2 MY

Potential energy

L’
V==yK
L8
3. The natural frequencies w,, and
corresponding mode shape vectors u

satisfy

(n)

KL_l(n) = wnzMu(") ,

4. Orthogonality and normalisation

RO Ay
1, Jj=k
0, =k

NOF OIS R
w,, Jj=k

5. General response

The general response of the system can be
written as a sum of modal responses

N
y(0 = 2q;0) u =Uq()
j=1
where {J is a matrix whose N columns are
the normalised eigenvectors g(j) and ¢g; can

be thought of as the “quantity” of the jth
mode.

3C5 / 3C6 data sheet

Continuous systems

The forced vibration of a continuous system
is determined by solving a partial differential
equation: see p. 6 for examples.

T = % fuzdm

where the integral is with respect to mass
(similar to moments and products of inertia).

See p. 4 for examples.

The natural frequencies ®, and mode
shapes u,(x) are found by solving the

appropriate differential equation (see p. 4)

and  boundary  conditions, assuming
harmonic time dependence.
0, j=k
fuj(x)uk(x)dm= L=k

The general response of the system can be
written as a sum of modal responses

w(x,t) = qu(t) uj(x)
J

where w(x,?) is the displacement and ¢; can

be thought of as the “quantity” of the jth
mode.
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6. Modal coordinates g satisfy
g+ [diag(a)‘jf)] qg=0
where y = Ug and the modal force vector
o-U'f.
7. Frequency response function

For input generalised force f; at frequency

w and measured generalised displacement
vy the transfer function is

Z’”"

nlw

(n)
H(jk,w)=

(with no damping), or

N w(n)y, (1)

- Yk Jj %k
H{j.kw)=—"=
( ) fj %wn2+2iwwnén - w?

(with small dampirg) where the damping
factor §, is as in the Mechanics Data Book

for one-degree-of-freedom systems.
8. Pattern of antiresonances

For a system with well-separated resonances
(low modal overlap), if the factor uj(")uk(")
has the same sign for two adjacent
resonances then the transfer function will
have an antiresonance between the two
peaks. If it has opposite sign, there will be
no antiresonance.

9. Impulse response

For a unit impulsive generalised force
f; = 6(t) the measured response yy is given

by

g(j.k,t) =y ()= Y =———sinw,t

u MZ

for t = O (with no dampmg), or

1 ()

g(.j7k,t) = - sina)n[ e"wnCnf

n=| @n

for t = 0 (with small damping).
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Each modal amplitude qj(z) satisfies
. 2
q;+0jq;=0;

where Q; = [ f(x,t) u;(x) dm and f(x,1) is
the external applied force distribution.

For force F at frequency w applied at point
x, and displacement w measured at point y,
the transfer function is

w
T =

(with no damping), or

H(x.y.) -~ Up(X) Uy (v) >

L+ 2iow,E, - o

(with small damping) where the damping
factor £, is as in the Mechanics Data Book
for one-degree-of-freedom systems.

For a system with low modal overlap, if the
factor u,(x)u,(y) has the same sign for two
adjacent resonances then the transfer
function will have an antiresonance between
the two peaks. If it has opposite sign, there
will be no antiresonance.

For a unit impulse applied at # = O at point x,
the response at point y is

glx,y.1) = z _____Ltn(xc)uun S sinw,t
n n

for t = 0 (with no damping), or

glx,y,1) = z Un(X) 1, (3) sin w, ¢ ¢~ “nbnt
n @n
for ¢t = 0 (with small damping).
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10. Step response

For a unit step generalised force For a unit step force applied at ¢ = 0 at point
0 <0 . x,the response at point y is
i1 ss0 the measured response y, is ) . (9)
= NV ) Hn V) g
given by h(x,y,t)= E w,zl [1-cosw,!]
n
N  (n) (n) . .
uvu
h(j,k,t) =y (1) = E J 2/< [l—cosa)nt] for ¢ =0 (with no damping), or
n=l  ©n h(t) = Eu"—(x);"—(yz [1 —cosw,t e—w"C"t]
for ¢t =2 0 (with no damping), or n Wy,
N (n) (n) for ¢t = 0 (with small damping).
ui\'u
h(j,k,t) =~ E]—Zk— [1 —coswy,! e—w"C"t]
n=1 Wp

for ¢ =0 (with small damping).

Rayleigh’s principle for small vibrations

. . . V. y'Ky
The “Rayleigh quotient” for a discrete system is % = —,
T y'my

generalised coordinates, M is the mass matrix and X is the stiffness matrix. The equivalent
quantity for a continuous system is defined using the energy expressions on p. 6.

where y is the vector of

If this quantity is evaluated with any vector y, the result will be

(1) = the smallest squared frequency;

(2) <the largest squared frequency;

(3) a good approximation to w,% if y is an approximation to E(k).

V.
(Formally, F is stationary near each mode.)
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GOVERNING EQUATIONS FOR CONTINUOUS SYSTEMS
Transverse vibration of a stretched string

Tension P, mass per unit length m, transverse displacement w(x,t) , applied lateral force
f(x,t) per unit length.

Equation of motion Potential energy Kinetic energy
2 2 2 2
a w Jw 1 aw 1 ow
m -P = f(x,t V==P|| —| dx T=—m||—| dx
o P aE I 2 j(ax] 2 f(ar]

Torsional vibration of a circular shaft

Shear modulus G, density p, external radius a, internal radius & if shaft is hollow, angular
displacement 6(x,t), applied torque f(x,¢) per unit length.

Polar moment of area is J = (n/2)(a4 - b4).

Equation of motion Potential energy Kinetic energy
2 2 2 2
a0 a°0 1 a0 1 .fd0
J -GJ = f(x,t ==GJ | —| dx T==pJ||—| dx
pIoE m O g T 2 f(ax) 2P J[a;)

Axial vibration of a rod or column

Young’s modulus £, density p, cross-sectional area A, axial displacement w(x,¢) , applied
axial force f(x,t) per unitlength.

Equation of motion Potential energy Kinetic energy
2 2 4\ 2 2
d w a°w 1 dw 1 ow
A - EA = f(xt =—FA[|—]| dx ==pA[|—| dx
PR 2 - 2 f[ax) 2P f( az)

Bending vibration of an Euler beam

Young’s modulus £, density p, cross-sectional area A, second moment of area of cross-
section /, transverse displacement w(x,t), applied transverse force f(x,¢) per unit length.

Equation of motion Potential energy Kinetic energy
2
52 4 2 2
a°w Jdw 1 J°w 1 ow
A + Ef = f(x,t V=—FEIl dx T==pA[|—| dx
P52 PCaEAl 2 f[o'?sz 2" f( ar)

Note that values of I can be found in the Mechanics Data Book.
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Answers

2
1(b) a)=ﬂ\/§, n=if3. ; (@) obm—=id __
L \Nm AL(mL+ M)

2 ER? 4
2(a) tanaL =tanhal, o =——m-~a";
12p

(c) 20.35, 33.08 semitones

3(b) Displacement patterns (i) [25, 13, 7, 3]; (ii) [14, 12, 9, 5]
(©) () w=05117Vk/m ; (ii) w =0.4534~k/m

4(a)d=1/3;B=1/6;C=2/3
6k
d) w= -7;(:&\/5)



